perClass Mira
Documentation

Copyright © 2018-2023, perClass BV, All Rights Reserved.

Table of contents

g} 'o T [T u o o PP 6
Getting Startedcovve i 7
PerClass producCt SEFUCLUNEccuuiiiiiii et eaa s 7
Installation and license activationccoiiiiiiiii i 7
V1Y 1 [P 11
Build classifier on eXisting SCANSceuiiieriiiiriiiiiine e e eas 12
(@ =t 1 o Jr= N o] 0 [Tt PP 12
AddiNg IMAGES ..ceuiiiiiiiii e s e e e e e e aa e 13
Spectral cube visualizationccccuiiiiiii s 15
Training @ ClaSIfieriieei i 16
Switching between labels and deciSioNSccuoviiviiiieii s 19
IMproving the ClassSifier ... 20
Improving the [abelingoceviiiiii 20
AddiNg NEW CIASSEScuuiiiiiiiiiiiiii et ra e r s e e eeas 22
Acquire data and INtErpret ... 25
Creating a project for acquUISItIONovveriiiiiiiicre e 27
Connecting to the StAge ...ccvuiiiiiii s 28
Connecting to the CamMEraccvviiiiiiier e 30
Recording referenCesc.oviveeiiiiiiiiii i 31
DefiniNg @ SCAN @raivvvuiiiriieriieis e s e s e e s ese s e e s e e e ra e s rrn s e rneernnnanes 32
2T olo] e 1] o = Y= o PP 33
Building a classifier and applying to live datacccooviiiiiiiiiiin e, 35

O LT o 11T [PP 38
N LS A] o) 1< o 38
@] 0 1= PPN 39
Object segmeNntationoveeeiierriiirrii e e 40
(@] [=Tol 1= 0 = = | o o P 41
Object classifiCationcciceuiiiiiii 43
=T 0] P 44
2T [o] o= T o] = o o] o R 44
(@00 11110 T 4= 1) PRI 46
Test set confusion MAtriXovveeei i 48
Current image confusSion MAtFiXc..vieeeireerirrerinrern e e ernnns 51
Optimizing classifier performanceccoocii i 52
Cost sensitive OptimiZationcvveeriieiiieiieerrrrr e s s rnn e 52
Performance CONtraintsceviiieiiiieri e e e 53
Object confusSion MALriXcceuiieriiieii e e aan s 57
Detailed information on object matching ... 59
Copying confUSION MALFIX .evvuiieeruiieieiererse e s e e s e e e rrr e e e e e ennas 60
Visualization (spectral iNdiCeS)ivuuiiieriiiriiiiiiir i 62
Adjusting spectral featuresocuuei i 64
Scaling spectral featurescvvvii i 66
Applying feature extraction to foregroundccoeieviiiiiiiii s 67
(@0 (0] 011 0L PP 68
Feature extraction (eXpOrting)ccuvveeeeiiiriiiieiiicr e e 71
Extracting multiple featuresooveviiiii s 74

Extracting from region gridc.oviiriiiiiis e 76

Defining region extraction template ..o 77

EXPOrting iNtO XML ..uieiiiiie e er s e r s e s s rs s s e s s s e s e s e anenn e 78
R0 =17 o] 78
Step 1: Pixel classificationcoccuiiiiiiiiiiiii s 79
Step 2: Object segmentationc.ovveriiieriiiri e 80
Step 3: Object anNOtationcvvvveiiiiiiin e 80
Step 4: Regression MOAEliNgccvuvieeiieriiieii e r e e 83
Step 5: Defining test data Set ... 85
Step 6: Improving regression MOodelcocviiiiiiiiiii s 87
(2T =11=] T o 1 o o) PP 87
Performance StatiStiCsvvivriiiiiiiiiiii e 88
(@181 1= g o] (o | (PPN 90
EFTOr PlOL e 90
Regression using subset of bandsccooiiiiiiiii i, 92
Regressor and classifier band subsetsccoiiiiiiiii 94

=T] £ 0001 T PN 94
Additional regression tOO0ISceuiiiiiiiiii 96
Model search versus retrainingccccovveriiiiiin e 96
Applying t0 NEW IMAGES ...cevuiieeriiiirrniirerrs e rrrn s e e e s s e rne s e rana s 96

Pixel visualization of regression outputcccvviviiiiiii e, 98
SPECLral PlOL ..vueieee e 100
Class-Specific diSPIAYcveuiiiiiiiiiiiiii e 100
Display range and SCaliNgoivevuiiiiriiiieiris e eenn s 101
Band SEleCtioNc.uviieiiiiie e 103
Band subsets used by Modelscoovveiiiiiiiii s 105
Frame WIdgetu i e 106
1) 7= [P 108
=T <IN lo] 113 =1 (o 3 109
0=] 0 0[] = 110
(0= 4 1T = ol 1) P 110
RECOrding PaNnEloceeeiiiii e 111
Recommended SCreen SELUPvieeiiiriierii s e e e e e r s e e 113
Y=] e Yotz I =1 o T 113
0T T 114
Exporting per-image reSUISc.oviiriiiiiicei s ess e er s e n e 115
Exporting per-object reSUILSccvveuiiieiiiiiiiiiis e e e 116
Exporting visualizations ..o 117
Exporting visualizations as float imagescceevviriiiiiiiieiniee e 118
(0o gV I ol o= PN 120
o1] o I =T [o] o 121

| g o7] | o I =T [o] o 122
Exporting label images ... 124
T [I =] o 125
Flagging images for teStiNgc.cviveiiiiiiiiiie e s ra e 126

(@1 g0 XY= s =1 T o I PP 127
Cross-validation over iMagescccevvieeuiieeniiieninr s e rn e eenas 129
Cross-validation over repliCasccoivviiiiiiiiiiiin e 131
Default actionivee i 134

RS = =] o= PP 135

| gL =] o] o T 135

Example of acquisition from Camera API ..o 136

REIEASE NOLES ...cevviiiieri e e r s e e e e s e e s e rnn e e rrnneaees 139
P o] 0] o= 1[0 o T = = P 149
Enabling applicCation SErVeroiieeiiiic e 150
Communicating With the SErverci i 151
(0o 391 3= o 011 o TR 153
Example communication using TCloiiviiiiiiiiiiier e e 155
PEICIASS STAGE ...ivuiiiii i 156
Assembling INSLrUCLIONSiiuiiii e 157
Disassembling INSLFUCLIONScvcvuiiieiiiiiii e rre e e e e aneees 158
SUPPOrtEd CAMEIAS ...cvuiieuieriiieere e e s e e e s s e s s e s s e e s e e s e rn s s ranesrnnnsennnsens 160
Supported spectral CAmMErasc.viiuiiiiiiiii 160
(@] o= o PR 161
o[ToT = T =T 1 U P 162

[== o 11 || PP 162
Headwall MV.X ... e r s e s s s e s e ra e e rnnnees 162
Headwall MV.C NIRccoiiiiiiiiieirie i rn s e s s e s e n s nnn e ees 163
Headwall MV.C VNIRoiiiiiiiciri e eer s ss s s rn s enn s e nne s s rnn e ees 163
ST T o 163
PErClass Camera APoceuiiiiiiiie e e e 164
MIFAACH_INIT ceneeie e 164
MIrAaCa_GEEVEISION ..cuieiiiiii e e e e e eas 165
Miraacq_GetAPIVErSIONcc.iiuiiiiiiii e e e a e 165
Miraacq_GetReCOrderTYPE ..uiivriiiiriiiiii e s ere e s e e s s e s s a s e rn e enas 166
Miraacq_GEtErrorCOAE ...cuuiiiuiiiii i e aa s 166
a1] == Taa I €= o = o] o T P 166
MIrAAC_SCANDEAVICES ...ceuiiviiiiieiiiir e e e e r e e an e enns 167
miraacq_GetDeviceCouNt ..o 167
Miraacq_GetDeviCeNGME ..o 167
MiraaCq_OPENDEAVICEcvuiieeiierieriririrr e ern e s s e s s s s s s e e s rnnssrnnsernnses 168
MIraaCq_ClOSEDEVICE ...cuuuiiiiiii it e e 168
miraacq_DeviceIsSNapshotciveeiiiii s 168
miraacq_Initialize ACQUISITIONcceuiiieiiiiii e 169
Miraacq_GetFrameSize ..o 169
miraacq_GetFrameWidth ... 169
miraacq_GetFrameHeIghtcceuii i 169
miraacq_GetFrameBandsccooiiiiiiiii 170
Miraacq_GetFrameDataTyPe ...ovv i e 170
miraacq_GetFrameDatalayOoutocevvviiiiiiiiinrerr e e 170
miraacq_CanReturnWavelengths ... e 171
miraacq_GetFrameWavelength ..o 171
miraacq_SetResamplingWavelengthCountccoovi i, 171
miraacq_SetResamplingWavelengthccoooiiiiiiiii e, 172
Miraacq_SetResSamplingoiieeuiiiiiriiicrrr e e e 172
Miraacq_StartACQUISITIONcuuiieiii e 172
MIraaC_GELFrame ...cueceie i 172
Miraacq_STtOPACQUISITION ..cvuiiieiieeiire e r e r e e e ee 173
MIrAaACH_SELEXPOSUIEivniiiiiiiiiie s e e s e e s s s s e s s s s s ean s en s s ennsennsrnnennnns 173
MIraaCH_GELEXPOSUIE ...uivuieiieriieeteese s e s s s e s e a s s s e a s e s e s ennsenannnns 173

Miraacq_SetFrameRate ... 174

Miraacq_GetFrameRate ..o 174

MIFrAACH_REICASEceuiiiiii i e ea e 174
perClass Mira RUNEIME APIoiiiiii e re e een e e e 175
107> 1 176
0] (0 Yo [176
[0 1T T TS0V 7T 1 177
Y1t T Lo = 0] o T [177
MIFra_GELEIOIrMSg ...vei i e e a e e 177
MIra_REfrESNDEVICELIST ..vuivinieiiereieieieienreieare s enreenseeasensssensarensanensenenren 178
01 T TS0 B 1Y (o= o T U | 178
MIFA_GEEDEVICENGME uiriiiiiiiiiiiiir e r s e s ra s s e e s raransnsn 178
[1T = TS0 LS/ (o] 178
MIra_LOAdMOdEl ... cuieiiiiiii i e 179
(901 1= T o Y= T o o <ot o) 1 179
MIra_SetMINODJSIZE ...ccuriiii e 180
Mmira_SetSegmentationccocv i 180
mira_GetINputWidth ... 181
Mira_SetInputWidth ... 181
mira_GetInputHeight ... s 181
Mira_GetINPUEBANASccuiiiiii e e e ea e 181
Mira_GetINPUIDAtaTYPE ..ccuoiveiiieiieinierir e r e e e enas 182
mira_GetInputDatalayOutoovuiiieiiieiie e 182
01T I TS TS S N o= N 182
Mira_StartACQUISITIONiveiiiiici s e s e s era e 183
1= T 0= = [183
[T 1= T d (01 ST L1 oY 183
Mira_STOPACQUISITION ..uviieiiiieiiee i e e r s e e e s e e e s e nnn e 184
Mira_GetFrameEDECISIONS ...iuiiiiiiiiiiiiirii s ra s rasarenss 184
[T z= T L= 1o 50 11 | 184
Mira_GetRegVarCOUNTciiiiiii s r e e s e ena e 184
Mira_GetRegVarNamEccuiiiiii e e ra e 185
mira_GetObjDataRegOULPULc.oiiiiiici e e 185
mira_GetFrameRegOUtPULVArivieiiiiii e 186
[1Tz I C =10 =T = 1. T 187
[1= T C T o DT 0] (o] 187
Mira_GetObJCOUNLuir i e 187
Mira_GetObjDatalntccuiiiiiii 188
Mira_GetObjDataClassSizecccuviiviiiiiiiii i 189
Mira_GetObjDataClassSFraccicuiiiuiiiiiiiii e 189
MIFA_SAVEIMAGE . .eeiiii e 189
L= TGS (T 1T 190
TroublesShOotingccuiiiiii 190

How to enable 10ggingcoiun i 191

Introduction

perClass Mira® is the easiest user interface for interpretation of spectral images with real-time
deployment.

It is a comprehensive collection of tools empowering users to

e Acquire high quality spectral images using a range of multi- and hyper-spectral cameras
¢ Build classification and regression solutions

¢ Export specific information from detected objects or user-defined regions

¢ Batch process new scans using user-defined solutions

¢ Deploy solutions to a live data stream and integrate in production

It is an application development tool for industrial and applied researchers who leverage spectral
imaging as a tool. Specifically, two use-cases are optimized:

1) Development and deployment of smart sorting machines by system integrators . Example
application is nut sorting, fruit quality grading or foreign object detection machines in food industry.

2) Processing of large number of spectral scans extracting relevant information of further
research. Example application domains are plant phenotyping and food quality

perClass Mira is tightly integrated with perClass Stage, a linear lab-scanning kit suporting a range
of spectral cameras.

perClass documentation

Reference
Product structure
\ Release notes

ion and license activati Getting Started perClass Stage

Ir / Supported cameras
Users' guide
Build a classifier on existing scans perClass Application Server
perClass Camera AP|

Acquire a scan from spectral camera perClass Mira Runtime API

New project

Spectral plot Visualization Regions

Exporting
Object panel Stage
Regression

Camera Frame
Confusion matrix

Cross-validation Recording
Feature extraction

perClass documentation is structured in the following way:

¢ The Getting Started chapter guides you step-by-step how to
Understand perClass product structure

Install the software and active its license

Build a classifier for spectral images you already have stored in files
Acquire new scans from spectral camera and interpret them
¢ The Users' guide describes each software component in detail.

¢ The Reference provides detailed information on

Software integration

Software release notes

Supported sensors

perClass Stage

O O0OO0OO0

O O0OO0OO0

perClass Mira Documentation

0 perClass Mira Runtime API
0 perClass Camera API
0 perClass Application Server API

Getting started

This document describes perClass product structure and provides quick guides to:
¢ Build a classifier on existing scans
¢ Acquire new data from a spectral camera and interpret it using a classifier

perClass product structure

perClass is a collection of multiple tools including

¢ perClass Mira User interface emporing users interpret spectral images

¢ perClass Stage, a hardware lab-scanning kit supporting different spectral cameras.

¢ perClass Camera API connecting to different spectral cameras

¢ perClass Mira Runtime API to embed solutions developed in the perClass Mira to custom applications

¢ perClass Application Server allowing one to build live demonstrators by remotely controlling perClass
Mira GUI and acquisition via text commands

¢ perClass Batch processor allowing one to apply solutions to new scans without launching the perClass
Mira GUI

~ perClass Mira

perClass Stage perClass Batch

perClass Application Server
perClass Camera API

perClass Mira Runtime API

Installation and license activation

This section describes how to install perClass Mira software and activate its license.

Run the installation file, the installer dialog will appear:

71191

perClass Mira Documentation

Welcome to perClass Mira Setup

This will install perClass Mira 4.2 on your computer.
Click Next to continue, or Cancel to exit Setup.

build 24-feb-2023 '

Copyright ® 2023 perClass BV

Cancel

In case you already have an existing perClass Mira installation, the following dialog will also appeatr:

perClass Mira 4.2 Setup

Currently you have “perClass Mira v3.2" installed on your
! computer,

Click "YES® to uninstall this version before installing v4.2.
Click "NO” to overwrite v3.2 with v4.2.

Click "CANCEL" to keep v3.2 and install v4.2 in other location.

If you wish to install the new release into a directory you specify, click on Cancel button.

You need to accept end-user license agreement before proceeding:

8/191

perClass Mira Documentation

®. perClass Mira 4.2 Setup

License Agreement
Please read the following important information before continuing. ‘Q;

Please read the following License Agreement. You must accept the terms
of this agreement before continuing with the installation.

perClass End User License Agreement
A: Installation and Use Annex
B: Services and Extra Services

perClass End User License Agreement

1. Definitions
Words and phrases used in this Agreement have the following meanings:

Agreement: hd

I accept the agreement

Print <Back || MNext= Cancel

If you selected to customize location, you may now specify the installation directory:

w. perClass Mira 4.2 Setup

Select Application Folder
Please choose the directory for the installation. “:;

L_J Setup will install perClass Mira 4.2 in the folder shown below.

Destination Folder

|C:\Prugram Files\perClass Mira Browse...

Required free space: 2.82 GB
Available free space: 37.41 GB

< ock | [(Bewt>] | Gonc

TIP: You may freely install multiple releases of perClass Mira on the same computer. If you, it is
recommeded to use full version including date in the file name, for example: "perClass_Mira_4.2_24feb23"

9/191

perClass Mira Documentation

In the last step, you may confirm or cancel the installation:

® perClass Mira 4.2 Setup

Ready to Install

Setup is now ready to begin installing perClass Mira 4.2 on your
computer.

Click Install to continue with the installation, or Back if you want to
review or change any settings.

Destination Folder:
C:\Program Files\perClass Mira

Program group name:
perClass Mira 4.2

Additional tasks:
Create shortcut on Desktop
Associate perClass Mira with file type(s): .mira

< Back Install | Cancel

After extracting the files:

» perClass Mira 4.2 Setup

Installing...

Please wait while perClass Mira 4.2 is being installed on your
computer.

Extracting files...

10/ 191

perClass Mira Documentation

Finally, you may launch the installed software directory from the installation dialog:

w. perClass Mira 4.2 Setup -

Installation Completed

perClass Mira 4.2 has been installed on your
computer.

Click Finish to exit Setup.

Launch perClass Mira

Activation
On the first run, the Activation dialog appears:

W Activate perClass Mira license

Online activation Offline activation & license installation

Fill-in the activation key and press the Activate button.

If you cannot connect to internet on this computer, click on the "Offline activation” tab above.

Activation key:

Activation key has the following form
process, please contact us at suppar om

If you have a license file (with .lic extension) you may drag & drop it to this dialog.

11/191

perClass Mira Documentation

Fill in the activation key and press Activate
W Activate perClass Mira license

Online activation Offline activation & license installation

Fill-in the activation key and press the Activate button.

If you cannot connect to internet on this computer, click on the "Offline activation” tab above.

Activation key: 1234-1234-1234-1234| Activate

License sucessfully installed.

If you have a license file (with .lic extension) you may drag & drop it to this dialog.

Build classifier on existing scans

This tutorial demonstrates how to quickly build a classifier interpreting data in existing scans.

If your system contains a GPU, please start the software via per G ass_M r a_gpu shortcut or .exe file.
Otherwise, use the per G ass_M r a shortcut that provides only CPU backend.

Creating a project

Create a new project using File / New Project menu command.

12/191

perClass Mira Documentation

o Mew project

Project

Quick start

Racent prajects

Top level data drectory: CifProgram FlesfperCass Miafexample_scans

Computational device

e CUDA: NVE cg RTX 2070 Super, 8192 MB, CUDA Compute 7.5

The user has an option to either start from scans already stored in files or acquire data from a connected
spectral camera.

In this tutorial, we load an existing scan. Therefore, select the perClass project type.

The top level data directory field specifies where perClass Mira expects the scans. We will select the
exanpl e_scans sub- directory in the installation directory, typically C./ Program Fi | es/ per d ass
M ra/ exanpl e_scans.

The Computational device combo box allows you to specify the GPU, if available.
Adding images

perClass Mira main window will open. In order to add images, right-click with your mouse in the Images list
and select Add images to project... from the context menu.

13/191

perClass Mira Documentation

L pHCI.un Mira

ey Data :' fication Regréssion Camera Wi

nl' {

Iul:le | Nobbek Labek

assas X o M

.

Add mages to project ...

Show in Explorer

A dialog box will appear where you can select one or more images. For the perClass project type, the ENVI
.hdr files are listed corresponding to the ENVI cubes.

TIP: In order to select more than one image, hold Ctrl and click on the desired file names. If you wish to
select a set of images, you may click on the first one, then hold Shift key and click on the last one of the
desired group

In our example, we open the nat ur al _i mages1. hdr file.

Images X £ X

14 /191

perClass Mira Documentation

Spectral cube visualization

If the spectral cube specifies default R,G,B bands, like in our example, the image will open in false-color
preview mode. Otherwise, the single band mode is used.

You may drag the R,G,B lines in the spectral plot to adjust the false-color view. As you can see, the scan
was acquired by a sensor operating in NIR spectral range (900-1700nm). Therefore, the colors are only
visual aid and do not corresond to the color of the physical objects.

Moving the mouse over the image, you will see the spectrum at each point as a white line in the spectral
plot. Details on pixel coordinates, wavelength and a value can be found in the status bar area.

You may switch to the single band mode using the Cube button on the toolbar.

= perClass Mira

atural_objectsl

Dragging the blue line in the spectral plot, you may change the band. Note the band index and wavelength
in the status bar.

Note the red pattern on some of the pixels. This is a visualization feature that highlights pixels with values
higher than the current maximum bound of the spectral plot.

You may adjust the spectral plot range using the mouse wheel or by clicking and dragging in the spectral
plot.

We will load the second image. Select again Add images to project...in the Images context menu and
select nat ural _obj ect s2. hdr.

15/191

perClass Mira Documentation

= perClass Mira

Images X
natural_objectsl

atural_objects2

Note, that the spectral plot bounds do not change when moving between images. With the manual spectral
bounds, you always see comparable view of the data.

We may also enable auto stretch of image brightness in the spectal plot context menu (via right mouse
click).

The auto-stretch extends each image so that a fixed percentile of the image histogram is visualized. The
percentile can be adjusted by the slider.

When moving between the images, note that the spectral plot bounds change depending on the image
histogram. The auto-stretch mode assures you alwas see "something" irrespective gow bright or dark an
image is. You leave the auto-stretch mode by either disabliong it in the menu or manually adjusting the
spectral plot bounds.

TIP: The red pattern for pixcels above the top spectral plot bound can be changed into white color in
View / Show saturated data as menu command

Training a clasifier

perClass Mira allows you easily define custom classification solutions. Classifier is an algorthm able to
assign any pixel of your image to one of pre-defined classes.

16/191

perClass Mira Documentation

The process of building a classifier comprises three steps:

¢ Defining the classes of interest

¢ Labeling examples used for training

¢ Testing / validating that the classifier hevaes as expected on unseen examples or images

In order to define a class, right click in the Classes list and select New class... command:

1atural_objectsl Set class as foreground
atural_objects2

A dialog will appear, where we can specify class name. We're interested to define the class called
background:

m Add class

Class name:

| background

| oK

The new class will be added to the class list:

Classes X

0 Unknown

We may now label (paint) some pixels we consider background:

Let us change the color to lighter blue that is easier to see in our image by clicking on the color swatch next
to the class name.

17/191

perClass Mira Documentation

Ele VWiew Data ation Re amera Window Help

a Cam
; T
U [“;F n rﬁ r:: Select color
Images (BTG Cube (BLGE

Chsses x £ X

Unknawn
background

Irages X Fox

natural_objects?

Cance
Dutput 2 Cancel

Image "natu

® perClass Mira

Ha View [Data

natural

To zoom the view in or out, you may hold Ctrl key and use mouse wheel. This zooms aiming at the mouse
pointer. Alternatively, use the Zoom buttons on the toolbar

To delete labels, hold the Shift key and paint with a mouse.

You may also adjust the brush size using the Brush button on the toolbar.

We define also the second class called leaves and the third one called nuts:

18/191

perClass Mira Documentation

o perClass Mira

Output X

Note, that mean spectrum of each class and its min/max range are indicated in the spectral plot.
We can now click the Model search toolbar button to build a classifier. The software will use the labeled

pixels to optimize classification model. It will then apply the trained model to the entire image switching to
the Decisions view. To see the entire image, we zoomed out.

Help

(51 &
Cube |EUTFELTTREFTEEE Dacisons

Output X

Switching between labels and decisions

In the decision view, each image pixel is assigned to one of the user-defined classes.

Note, that we view a visualization comprised of the decision layer as a trasparent overlay over the data
layer (RGB or single band).

We may change the transparency using the Alpha toolbar button. When you click the Alpha button, two
sliders will appear.

19/191

perClass Mira Documentation

N EEE 9

Undo Brush i@ | Rotate right Ro

Al nuts

The left "All" slider controls all classes. Adjusting it, we make all classifier decisions more transparent
revealing the data layer (single band or the RGB Preview depending on the selection).

The right slider is class-specific. It controls the class, selected in the class list. It allows us to fine-time
visualization based on our use case. For example, we may wish to keep only specific defect strongly visible
where all other classifier decisions are fully transparent.

In order to label more examples, click on the Labels button.

TIP: You may use Spacebar key to switch to the previous layer (here we would switch from Decisions to
Labels)

Improving the classifier

There are several ways we may improve the classification results:
¢ Improve the labeling and retrain the model

¢ Add/remove classes

¢ Remove noisy or uninformative bands

Subjectively, we may judge classifier performance visually by applying it to new images unseen in training.
In order to assess objective classification performance, we may estimate error using confusion matrix tool
on test images, unseen in training.

Improving the labeling

perClass Mira provides an active learning tool that helps us to understand what examples the model did not
see in training.

&

Show unknown

You may enable it using the Show unknown toolbar button or by pressing u (unknown)

20/191

perClass Mira Documentation

There is an extra decision "Unseen in training" with high transparency. The extra decision highlights the
pixels that the classification model considers very different from anything labeled.

For example, the leaf on the right side is largely rejected being slightly different than the two leaves we
labeled.

Retrain

We may add extra labeling and retrain the model using the Retrain toolbar button

The Show unknown tool allows us to label in the areas needed and, thereby, building representative training
sets.

TIP: It is generally better in perClass Mira to define less but accurate and representative labels. Use small
brush with at least 2 pixels (to allow assign-stroke-to-class)

21/191

Adding new classes

We may add or remove classes anytime. In our example, we labeled only background, leaves and nuts so
far. However, there are other objects of other materials present, such as nut shells, olive kernels, wood or
stones.

We add several classes to the project:

Classification Regression Camera Window Help

- x ;
4 H I B s
dew [ReTLTM | Ho bbeks WELSE Decsons Errors

natural_objects2

We will then use Model search to find a new model. The difference between Model search and Retrain
tools is as follows:

¢ The Model search performs full search for the best model
¢ The Retrain tool uses the existing model definition and retrains it using the current labels

If we only perform slight update of the labeling, for example, around the edges or adding more
representative examples of existing materials, Retrain is sufficient. The model search is useful when we add
entirely new classes or label quite defferent examples of the existing classes.

perClass Mira Documentation

Spectra X

We can see that we have labeled olive kernels as "wood". We may wish to have them labeled as "shell"

instead. In perClass Mira, we have a full control on the labeling. We can easily assign individual labeling
strokes to different classes.

Switch to the Labels mode (via the toolbar button or by pressing small | key (I as in Labels).

In the Classes list, select the class you wish to assign the stroke to (Shells). Then, right-click with the
mouse over the brown label stroke on top of the olive kernel.

In the context menu, select Assign region to current class.

23/191

o perClazs Mirs
Ede View Data C I essn G 3 Window Help

s ©

Ho Bbek QELIIN Decsons Emors Regions Objects

E YUES m

3 wood

Images * & X
atvral olyects]

natural_obhjacts2

Set brush size
Clear cumment image bbeks
Add or update point annotation
ATON ..
Crk+C

The label stroke will be assigned to the shells class and will become red:

We also assign the second label stroke on top of the other olive kernel to shells and re-run the Model
search.

The olive kernels are now part of the red shells class. Note, that in perClass Mira, the user may define
classes that span multiple materials or represent generic high-level concepts (defect, background, product
etc.)

perClass Mira Documentation

Acquire data and interpret

This tutorial illustrates how to

¢ acquire data using perClass Stage

¢ Dbuild classification model

¢ apply the model on the live data stream

This chapter uses perClass Stage scanning kit and Headwall MV.C VNIR camera connecting over USB3.
Follow these steps for specific camera installation instructions.

25/191

We will leverage the default plastic samples included with each perClass Stage. These are tiles of different
technical plastics with etched labels such as A1-A6 and B1-E1. The letter corresponds to a material and the

perClass Mira Documentation

number to its variant. For example, A1 and A3 represent the same material in different color combinations
while A1 and B1 two different white plastics.

Creating a project for acquisition

When starting an acquisition project, we need to select the desired camera type on the right side of the
New project dialog. Note, that any image acquisition in perClass Mira leverages "perClass"” project type
which gets automatically selected when clicking on the camera type. In this tutorial, we select the Headwall
MV.C VNIR camera.

27 /191

perClass Mira Documentation

[, New project ?
Project

Quick start | Scans in files Live acquisition

File format Camera type (always perClass file format)

ENVI Headwall I R
Headwall MV.C VNIR

Headwall Headwall M.}

Recent projects

Top level data directory: C:/Users/perClass/Pictures/Spectrallmages/documentation/acquire

Computational device

Available devices: CUDA: NVIDIA GeForce RTX 2070 Laptop GPU, 8192 MB, CUDA Compute 8.6

Cancel

TIP: The Quick start tab only lists camera and project types we have flagged as favorite. You may select
from all supported acquisition devices in Live acquisition tab and project types in Scans in files tab.

Connecting to the stage

In order to scan, we need to connect to perClass Stage and to the camera.

Recommended screen organization for scanning is as follows:

=E perClass Mira o

ton | Camera X Confus

¢ the Stage panel in the bottom-left provides all stage controls.

¢ the Camera panel shows controls of the acquisition

¢ the Recording panel in top-right allows us to define references and scan recording settings
¢ The Frame panel in the center shows the raw signal from the camera

We need to connect to the perClass Stage in order to control it by pressing the Connect button in Stage
panel:

28/191

perClass Mira Documentation

Stage X

Move to white reference

Cycle scanning area

Scan and record

White start 10 mm 5 White end 40 mm
Scan start 40mm % Scanend 350 mm T
[Limit travel speed Reset
Speed: 16 mm/s - mm - mmy's
[|

Not connected Connect

The stage performs a homing run. The white reference block will then be under the camera. This
represents the "position 0" of the stage.

Stage X
Move to white reference
Cycle scanning area

Scan and record

Move to start Move left S Move right Move to end

White stark 10 mm + White end 40 mm
Scan start 40mm S Scanend 350 mm S
O Limit travel speed Reset
Speed: 16 mmys 0 mm 0 mm/s
[|

Ready Disconnect

29/191

perClass Mira Documentation

Connecting to the camera

In order to connect to the camera, press the Camera button on the left side of the toolbar:
File View Data Classification

ol «

Camera Freview

Classes X

When the camera is initialized for the first time, we are offered a dialog to select the device:

=8 Select device ? >

Device:

0: MCO23MG-5Y-UB

oK Cancel

Once connected, we may start the acquisition either using the Play toolbar button or via Start button in the
Camera panel:

Images Play

Classes X

Objects Feature extraction | Camera X Confusion matrix ~ Visualization
Camera speed 4 ms, 250 fps
Classifier speed

Total speed (incl.acquisition) 1.9 ms, 204.1 fp

Exposure: 4,00 = Frame rate: 10000 ~ Max frame rate: 10000

max raw disply value 4094 band 173 =

Start

Speed Focus Auto-exposure Sguare pixels

The Camera panel then shows the speed of acquisition, namely the camera speed and the total speed

30/191

perClass Mira Documentation

including also user interface updates and all other activities.

The Camera panel can be used to adjust acquisition parameters such as exposure (integration time) and
frame rate. In this example, we keep the default settings.

Recording references

In order to interpret spectral images, it is highly recommended to correct the raw data from the sensor into
reflectance. This operation makes the data robust to illumination changes and thereby the interpretation
models more generally applicable.

Reflectance correction is based on two reference scans, namely the "white" reference corresponding to
the highest reflection we're considering and the "dark" reference defined by the noise of the imaging
Sensor.

In the Stage panel, we have selected the Move to white reference command in the combo box next to the A
button. Therefore, we may execute this command by pressing the A burron in the Stage panel or the
physical A button of the stage

We will first move the scanning table to the white reference bar.

TIP: You may define the most useful commands for your scanning work flow in the A,B,C command combo

31/191

perClass Mira Documentation

boxes. The choices are stored in mira.ini file and are available for future software sessions.

We can see actual raw data from the image sensor in the Frame panel We need to make sure that the

entire field of view is occupied with the white reference.

We can define the white reference using the respective button
panel.

in the Correction tab of the Recording

In order to record the dark reference, we need to close the optical path of MV.C VNIR camera manually

The time stamp and exposure used when recording the references is displayed in the Recording panel.

and press the Record button

Recording X

Correction Recording

O None O Point @ Line (non-uniformity) References scan-specific

White Record white lavel

acquired 2 8 11-24-03 with exposure of 4.00 ms
Dark Record

acquired 2 8_11-24-2¢ with exposure of 4.00 ms

Status: Set from scan

File View Data Clssification Regression Camera Window Help

R & | n ‘ Fi | e e |[E
Raw

Camera [yl Pause Corrected Zoomin Zoom out Alpha

TIP: If you change camera exposure, you need to retake the references. Difference in acquisition and
reference exposure is indicated by red colot of exposure value.

Defining a scan area

In order to record a scan, we define what area of the scanning table we wish to acquire. We start the
camera (Play toolbar button in Camera mode) and move the stage by pressing and holding the Move
right button

32/191

perClass Mira Documentation

Stage X
Move to white reference
Cycle scanning area

Scan and record

Move to start Move to end

Move laft Stop

Mave right

Record white White start 10 mm 5 White end 40 mm

Scan start 40 mm Scanend 350 mm T

[Limit travel speed Reset

Speed: 16 mmy/s 25 mm 0 mmys

Ready Disconnact

In our setup, we move the stage until we start receving the data from the table after all our plastic samples.

We can then read the stage position and fill the desired value into the Scan end edit field

Stage X

Move to white reference

Cycle scanning area

Scan and record

Move to start |~ Move left Stop

O Record white

White start 10 mm
Scan start 40 mm

O Limnit travel speed

Speed: 51 mmy/s

Ready

Recording a scan

Maove right

Move to end

> White end 40mm =

Scan end | 300| rmm 2

Reset

306 mm 0 mmy's

Disconnect

In order to record a scan, we can switch to the Recording tab next to Correction:

33/191

perClass Mira Documentation

Recording X

Correction | Recording

1

Directory ...ers/perClass/Pictures/Spectrallmages/first_session

Scan | plastid 2
Add timastamp Add index 1
Record scan Add to project

The Recording tab allows us to specify the directory where our scans will be saved o and the scan

Once the scan name is defined, we can record our first scan. In our example, we have the button C set to

Scan and record command. Therefore, we may press this button in Stage panel or pressin the physical C
button on the stage:

name

Stage X
Move to white reference
Cycle scanning area

Scan and record

Move to start Move left Stop Move right Move to end

[Record white White start 10 mm 5 White end 40 mm =

Scan start 40 mm Scan end |300/mm 2

O Limit travel speed Reset

Speed: 51 mm/s 306 mm 0 rmm/s
—-

Ready Disconnect

34/191

perClass Mira Documentation

TIP: If you use Scan and Record command and "nothing happens", double check that you have filled in a
scan name in Recording panel. If the name field is empty, scan cannot be recorded.

After the scan is recorded, it is loaded in perClass Mira image list and the software switches to the

Images mode a

h perClass Mirs o x

Recording X

it
023-

TIP: perClass Mira interface is optimized for efficient acquisition of a large number of scans. All you need
to do is to place new physiocal samples on the scanning table and press the C button.

We're now ready to interpret our first scan.
Building a classifier and applying to live data

We can design our classifier in the familiar way. We define classes, paint labels and build a model.

35/191

perClass Mira Documentation

In our example, we define background and material classes A - E

=E perClass Mira o =

We can see that all different variants of material A can be separated from different white plastics B-E.

Then, we pain the labels and create a model by pressing Model search

I:f, perClass Mira
File Wiew Data Classification Regression Camera Window Help
o N B @ « pO | 1 &F
Camera @GS Preview RIS LRI G Decisions =i Regions Objects Model search Retrain

Classes X *®

Unknown
background

Images X

ive acquisition
nbstic_1_2023-02-18 11-28-19

By pressing the B button in the Stage panel or the physical B button, we can start moving the stage
(because we selected this command previously):

36/191

perClass Mira Documentation

Stage X
Move to white reference
Cycle scanning area

Scan and record

Move to start Move left 5 Move right Move to end

O Record white White start 10 mm = White end 40 mm

Scan statt 40 mm % Scanend 300 mm
[Limnit travel speed Reset
Speed: 51 mmys 0 mm 0 mmys
—.

Ready Disconnect

Note that we now have more options in the Camera mode: Apart of the Raw and Corrected data stream, we
can also visualize live Decisions of our classification model:

ﬁ perClass Mira

File View Data Clssification Regression Camera Window Help

]| i E B B ®* S

Images Pause LI Comected Dedisions Zoomin Zoom out Alpha

Classes X

Unknown
background

A
B

The Camera panel will then also show a classifier speed (the red line) .

37/191

perClass Mira Documentation

This concludes our acquisition tutorial. We have learned how to acquire references, record scans, define
models and run the full correction and modeling pipeline on a live data stream.

User guide

This chapter provides detailed description of individual perClass Mira components.
New project

Once the software starts, the New Project dialog appeatrs.

The default Quick start tab allows the user to select three important settings:

1. The project type and camera used for acquisition if any camera is available
2. The top-level data directory

3. The computational device

38/191

perClass Mira Documentation

® New project
Project
Quick start Scans in files Live acquisition
File format Camera type (always perClass file format)

ENVI

Recent projects

2 Top level data directory: C:/Spectrallmages/Matural_objects

Computational device

3 Available devices: CUDA: NVIDIA GeForce RTX 2070 Super, 8192 MB, CUDA Compute 7.5

Cancel

perClass Mira allows the users to either start from existing scans already stored in files or to acquire new
scans from an attached spectral camera.

Note, that perClass Mira supports a broad range of project types and many common spectral camera
types. You may view all avaialble options in the Scans in files and Live acquisition tabs.

Direct acquisition into perClass Mira always uses the "perClass" project type.This assures that users of all
camera types can take advantage of identical and complete work-flows for data correction.

The top-level data directory 9 defines where all scans are located. It is stored in the project file but can
be changed anytime from the Image list context menu.

perClass Mira does not write into the data directory unless the user explicitly asks to (for example when
exporting the results). The reason is that data directories are assumed to be read-only so that original data
set is not altered in processing.

The Computational device 9 combo box allows the user to define what computational resource will be
used for data processing. Note, that perClass Mira installation comes with two executables: The

"per d ass_M ra. exe" that is CPU-only and works on any PC and "per Cl ass_M ra_gpu. exe" that
offers multiple backends including CPU, NVIDIA GPU and OpenCL CPU/GPU. If no correct GPU drivers

are found, the later executable may not be able to start.

TIP: In case you experience crashes or very slow operation when using a GPU, please update your GPU
drivers to the latest available. For most users this resolves the issues.

Objects

Object segmentation defines spatially coherent objects based on pixel classification results. In perClass
Mira, many operations and analysis types extend naturally to objects. For example, we may wish to
compute spectral index only on objects of interst, model quality of some objects using regression analysis
or export mean spectrum per object for further research.

The first step to apply object segmentation is to define one or more foreground classes. This can be done
using Image list context menu and selecting Flag class as foreground. Alternatively, the 'F' shortcut toggles

the foreground flag for the currently selected class in the Class list

39/191

perClass Mira Documentation

The Objects panel presents a separate section

where objects are defined (object segmentation) and

where objects are classified

= perClass Mira

O Object dec

O Manual

background

> 0.00

Object segmentation

Object segmentation is performed by selecting Objects toolbar button. In perClass Mira, object
segmentation is controlled by segmentation mask. By default, it is constructed handling each of the

foreground classes separately. This is the Each foreground mode
walnut in pixel decisions are segmented separately.

. Note, how the leave touching the

= perClass Mira

Object segmentation directly removes all objects smaller than specified minimal size
minimum size, we can quickly focus on large structures:

Changing the

40/191

perClass Mira Documentation

5 pixels 50 pixels 500 pixels

Al foreground * | Mnimum sze

@ Objact IDs O object de

@® HNone O Manual
atural_objects2

background

W Output

16 objects found
b S se ed in 4.7045 msec:
2,357 size=1127 bbox=[333:381 0:31] class=3 (shels) content(classind:pixel)= 2:78 3:76 4:917 5:56

: 42,552 size=8360 bbox=[477:601 0:127] class=1 (leaves) content(classind:pixels)= 2:5937 3:18 4:1754 5:651
: 33,183 size=1537 bbox=[160:206 12:54] dl 4 (wood) content{classind:pixels)= 2:32 3:0 4:0 5:1505
: 73,86 size=2739 bbox=[61:106 31:120] da (leaves) content(classind:pixels)= 2:2728 3:0 4:0 5:11
: 96,264 size=2199 bbox=[231:292 72:124] class=4 (wood) content{cl d:pixels)= 2:39 3:0 4.0 5:2160
: 105,377 size=3302 bbox=[335:422 74:140] class=4 (wood) content(classind:pixels)= 2:59 3:0 4:0 5:3243
: 194,186 size=7017 bbox=[145:230 122:248] class=2 (nuts) content(classind:pixels)= 2:1220 3:5749 4:47 5:1
: 252,544 size=26748 bbox=[450:632 148:345] class=1 (leaves) content{classind:pixels)= 2:26726 3:0 4:6 5:16
: 191,362 size=2425 bbox=[332:392 164:220] class=3 (shels) content{classind:pixels)= 2:328 3:28 4:2045 5:24
: 221,92 size=2419 bbox=[68:117 191:252] class=2 (nuts) content(classind:pixels)= 2:123 3:2289 4:7 5:0
: 268,260 size=1590 bbox=[230:287 248:288] class=2 (nuts) content(cassind:pixels)= 2:167 3:1253 4:163 5:7
: 317,347 size=1393 bbox=[315:382 302:337] class=3 (shels) content(classind:pixels)= 2:102 3:5 4:1284 5:2
: 357,383 size=1512 bbox=[368:400 322:388] ca (shells) content(classind:pixels)= 2:93 3:0 4:1419 5:0
: 387,195 size=2995 bbox=[161:222 331:445] clas (leaves) content{classind:pixels)= 2:2995 3:0 4:0 5:0
: 460,505 size=7915 bbox=[454:558 405:505] clas (nuts) content(classind:pixels)= 2:366 3:7473 4:76 5:0
: 471,288 size=1158 bbox=[259:315 457:486] clas (nuts) content(classind:pixels)= 2:124 3:968 4:66 5:0

16 objects found: the smallest object: 1127 pixels |

)
(%]

%]
w1

5
5

5

3
1
2
2

This includes object id, centroid, size in pixels, bounding box and object decision. At the last line, the
smallest object size is also provided. This is helpful when adjusting minimum object size.

Object separation
In some situations, we may wish to define objects manually. For example, we may wish to provide very
specific local areas for regression modeling or we wish to export mean spectra of specific regions that do

41/191

perClass Mira Documentation

not separate using our pixel classifier. This is possile using the Additional object separation tool:

ound -

@® oObject IDs) Object deciions

. @ Mone QO Manual
atural_objects2

background

By setting the Manual option, we may define object separation by drawing background labels in the
object segmentation result.In our example, we may force separation of the leaf from the nut even when we
use the All foreground mode or separate the nut object into two parts (for example, to extract mean spectra
from both).

Minmum sze

QO Object de

® Manual

background

Note, that the manual object separation does not extend to runtime. It is intended for specific highly
controlled extraction of data, not for automatic application to new images.

Holding shift, we may remove the separation labels. Clearing separation labels entirely is possible via the
context menu:

421191

perClass Mira Documentation

Clear object separation kbels

Copy image to clipboard Ctri+C

-

Object classification

perClass Mira directly applied object classifier after object segmentation. We may view per-object

In Each foreground mode, the classification is implicit i.e. each segmented class is the object decision.
This is indicated by the class color and displayed in the object list 9 ,

Note, that while the object decision visualization seems very similar to pixel decisions in our example, there
are many differences such as removed small objects along the edges.

decisions instead of the object IDs by selecting the Object decisions option

Objects X
Definition & V
Object mask
) Object IDs
tion () None

nat

Output X
obj014: 317,348 si 302 Jass
: 358,383 size 9b 9:399 388] dass=3 (shell

3 445} dass=1 (|

In the All foreground mode, classification is performed based on object content. Below, we can see that
the compound object composed of the walnut touching the leaf in the center is classified as a nut. By
default the classification is based on maximum fraction (majority voting). Each object in All foreground
mode provides information on pixel counts of each foreground class. See the highlighted line in the object
output for object 7. Because the majority of pixels is classified into nuts class, the entire object is as well.

43/191

perClass Mira Documentation

= perClass Mira

O Object IDs O]

on) None o

Alternative classification rule can be defined in the Decisions section. In the example below, we se the rule
such that if a fraction of leaves class is higher than 16%, the object is classified as leaves. That's what
happens to object 7. Currently, two rules can be defined based on fraction or absolute number of pixels.

= perClass Mira

® Manua

Output %
10

Regions

Regions tool in perClass Mira provides annotation of image areas. It is used for several purposes:
1. Itis always available as an area annotation tool

2. It allows extraction of information from specific image areas

3. It provides us with ground truth information for object classification

4. It enables localized annotation of specific objects for regression

Region annotation

Region annotation tool is always available by selecting the Regions toolbox button. We may then draw a
rectangle anywhere in the image. This tool is useful, for example, for a quick annotation of image
content by domain experts.

The current class, selected in the class list, is defining the color/class of the region.

441191

& penllass Mira
Fhe Wiew Data Clssfication Regression Camera Window Help

| - = . . F

54 @ = B - £
IMMH Cube Ho bbeks Labek Decsions Erroes Objects Model search R
Fa

Classes X

i} Unknown
bac

shelk

woad

® Object name

Object name

|reg1|

| Cancel

User can attach arbitrary text content to the region by clicking the left upper rectangle:

perClass Mira Documentation

—
m Potes

Object notes

quality 1

Cancel

Regions with existing content are highlighted using green rectangle. When hovering over, the content is
displayed in a tool-tip:

TegI

rq uality 1 |

Confusion matrix

When designing a robust classification algorithm, we need to understand its performance and robustness
in detail. In perClass Mira, we can use the Confusion matrix tool to understand and fine-tune pixel
classification performance.

In this section, we use the potato virus data set to illustrate Confusion matrix tool o and its use in
performance understanding and fine-tuning. When a pixel classifier is trained, the confusion matrix on
training set is always available in the Training set tab of the Confusion matrix panel.

Confusion matrix shows detailed report on classifier performance. In rows, it provide information on all
labeled examples in the training set (the ground truth). In the columns, it captures the classifier decisions
on these examples. Ideally, all labeled examples are allocated to the same categories. The confusion matrix
would show only diagonal elements (displayed in green). In practice, some examples are misclassified.
These show up off-diagonal and are renderred in red color.

By default, the confusion matrix is normalized by each row. Thie means that the entries represent
accuracies on-diagonal and error rates off-diagonal. The sum of the off-diagonal errors i.e. the class error
is displayed in the right-most column e
is misclassified.

. Class error reflects what percentage of the ground truth pixels

Similarly, the per-class purity is displayed in the bottom row . This denotes the fraction of each class
decisions that is actually classified correctly. This allows us to quickly judge if a specific classifier decision
is trustworthy. For example, when our classifier provides decisions on leaves, it is correct in 95% of cases.
However, when classifying the virus it is correct only on 73% of labeled pixels in our training set.

46 /191

perClass Mira Documentation

Finaly, the right-bottom corned provides one summary perfrormance indicator: The mean error over
classes - the average of per-class error rates.

The value of confusion matrix is in providing detailed understanding of classifier behaviour. While 2.8%
mean error does not seem too high, confusion matrix allows us to learn quickly, that 7% of healthy leaves is
being misclassieid as a virus (the are false positives).

54 (1 G 1 X '] =
Irages Cube Decsions
ba ind

0.002 0.000 0.003
0921 0.008 0.071 0.079
0.040 0.040
‘LMZJINLI
0.018 0.018
1.00 0.95 0.99 1.00 0.73 0.028

Dane,

Instead of normalized matrix, we may wish to display the absolute pixel counts in each field. This is possible
by disabling the normalization in the context menu:

Reset classifier
Show norrmalized confrmat
Copy to clipboard as image
Copy to clipboard as text
Mext confrrat solution
Prev confmat solution
Confmat decrease size
Confrmat increase size

Dark background
Disable all constraints

Clear all constraints

The not-normalized confusion matrix may highlight that some of our classes are undersamped. For
example, while our virus class contains only 165 labeled pixels, the background contains almost four
thousand.

471191

perClass Mira Documentation

Spectra Confusion matrix X

Training set = Test set Current image Objects

Operating point 4245 (from 6000)

1 2 4 True sample
: count
backaro leaves label virus

: background

2: leaves

3 virus

Decision

Total sample
count

count

Test set confusion matrix

By default, the confusion martix e is display that is estimated from training set. This means from alll

images o that are not flagged as a test set.

48 /191

perClass Mira Documentation

. perClass Mirs

Irages X F ®

e control 231001_1

In order to properly evaluate any classification solution, we need good performance on the independent
test set. The reason is that we need confirmation of generalization capability of our classifier on example
unseen in training. In perClass, testing is defined on the level of images. Images flagged as a test set are
not used for training the classifier.

NOTE: In order to take any change in test image flags into account, we need to retrain the model!

To estimate the test set confusion matrix, we switch to the Test set tab 9 . In our example, we will observe
that the confusion matrix is not complete. This is because not all classes were represented (labeled) in our
test scans.

49/191

perClass Mira Documentation

ctra Confusion matrix X

it [Test set Current image Objects

1 . 3

backaro leaves stem laba

YIus
: background
0.055 0.063

2: leaves

Mean class

Preckion
1.00 nan nan

We add relevant labeling to the two test scans and switch to Training set confusion matrix and back to the
Test set matrix to update it:

Note, that we do not observe the same misclassification of leaves into virus o as in the training set. In

addition, we can see higher errors in two new fields, misclassifying some stem as leaves e and
background as virus a .

It is very difficult from the performance estimates only to judge to what extent are these relevant errors. We
need to understand what pixels these misclassications represent in the image. That is greatly simplified by

50/191

perClass Mira Documentation

perClass Mira Errors tool and the Current image confusion matrix.

Current image confusion matrix

When we switch to Current image confusion matrix, we can easily introspect how individual confusion

matrix entries map to image pixels. The confusion matrix n

selected image 9 . Note, that again, we may miss some of the classes. The respective rows of the
confusion matrix then remain empty.

is displayed on for the pixels labeled in the

Confusion matre X

Current imag 1

=

0.028

o
0.35 nan

The Current image confusion matrix is fully interactive. When we hover over the confusion matrix entries,
errors at the pixel level are visualized over the image.

For example, moving the mouse over the background class error o , The Errors mode 9 is enabled.
We can see only the labeled pixels falling into the specific field of the confusion matrix. The pixels correctly
classified by our model are rendered in green and the misclassied pixels in red. In our example, we can
see al pixels labeled as background, some misclassied into virus and leaves classes.

- lass Mira

Confusion matre X
T Current mage Ol
3

stem

51/191

perClass Mira Documentation

We may wish to adjust transparency of foreground and background layers using the Alpha toolbar button.
This allows us to see more clearly what structures do the errors represent.

Optimizing classifier performance

In perClass Mira, classifier performance may be further fine-tuned and optimized using the confusion
matrix tool.

Tuning the classifier perfromance to application-specific requirements is a basic necessity in any
practically deployed machine learning system. It is because default way that statistical models make
decisions largely depend on the class abundancy in the training set which typically does not correspond to
application needs.

perClass Mira provides two ways to tune classifier performance in the confusion matrix:
1. Cost sensitive optimization
2. Performance constraints

Note, that all classifier optimization in perClass Mira happens on the training set, NOT the test set. This is
very important point. Test set, in perClass Mira, is considered only for performance evaluation, not for any
form of model tuning.

Cost sensitive optimization

In the Training set confusion matrix o , we right-click on the field that we wish to optimize. In our
example, we wish to lower the 7% of leaves misclassified as virus. Some of these pixels are pointed by

arrow 9 The slider in the context menu allows us to increase the cost for this entry:

52 /191

perClass Mira Documentation

fusion matrix X

Traning set

1: background

x)
iy contral 231001_1

virus misclassifications in the area e disappeared. However, another entry in the confusion matrix shows

Below, we can see that, by adjusting the slider , we can directly see classifier decisions changing. The

error increase 0 . It represents the virus pixels, misclassified as leaves.

= perClass Mira

Images X

ealthy. control 231001_1

We cannot see these piels on the current image of the healthy (control) plant as it does not contain any
virus infection. We can switch to training image with virus symptoms to investigate impact of this adjustment
on true virus class.

Performance contraints

The alternative way of fine-tuning the classifier performance is by defining performance contraints.This
means that we limit the error or accuracy on certain field or fields. We can do that by double clicking any
field of the matrix.

In our example, we double click on the leaves misclassified as virus o . A small green box appears in its
corner and the current value is listed below estimated error of our solution. The total number of solutions

2]

is decreased by each new contrain.

53/191

perClass Mira Documentation

Training sat st set Current image
Operating point 4945 (5978 valid from 6000)
i 2 3 3 4 5 Class error
h.’i-:'_'k,r"]l-.,.- — i e

1: background

Preciion Mean class

In order to tune the constrain, move mouse over the constrained field, hold Ctrl and use mouse wheel to
adjust the constrain. The new solution is displayed.

54 /191

perClass Mira Documentation

Spectra Confusion matrix X

Training set Test set Current image Objects

Operating point 1332 (5975 valid from 6000)

1 2 : 5

backgro leaves stem virus

: background

Class error

2: leaves

T Virus

Precision

Mean class
error

Multiple contraints can be defined on both errors and accuracy fields:

55/191

perClass Mira Documentation

Spectra Confusion matrix *
Training set = Test set Current image Objects

6 valid from 6000)

5 Class error

backgro leaves virus

: background

2: leaves

52 wirus

Precision Mean class
error

By clicking the tiny squares in top-left corners of the constrained fields we may disable / enable individual
constraints.

56 /191

perClass Mira Documentation

Spactra Confusion matrx X

Current image Objects

Operating point 4763 (4845 vald from 6000)

1

backgro leaves

Mean

2rmor

Object confusion matrix

In the same way pixel confusion matrix allows us to understand performance of pixel classifier, perClass
Mira provides object confusion matrix to characterize object classification performance.

In order to estimate object confusion matrix, we need

1. object classifier and
2. object ground truth, defined by image regions.

In our example, we built a pixel classifier and flagged several classes as foreground o . We use the All

foreground mode e and minimum size of 200 pixels 9 By clicking Objects toolbar button o , we
perform object segmentation followed by object classifier:

57 /191

perClass Mira Documentation

= perClass Mira
He View Daa (hssfiouon Regresson Camen Wndow Help
® B T 8 K e & HEE|l 92 ¢
Cuba | Nobbok Labes Decsons Emoes 5 Modelsewch Retran Showunknown Zoomin Zoom out Brush Apha | Rotate rght Rotate bft | Crop mode
Objects | confuson matnc
Defrition & Veualzaton
Obiject mask 2 Al foreground * Mnmum sz 3 200
Visualze: O Object s ® Object decsions
B duplay object ket
Additioral object separation QO tone @ Hanual
Decisions

Background deciion: backgeound
® Max fracton
O ruke

Defauk docsion:
1: fraction of

2 dsabled

- s

obj007: 194,186 size=7017 bbox=[145:230 122:248] class=2 (nuts) content({classind: pools)= 2:1220 3:5749 4:47 5:1
obj008: 252,544 size=26748 bbox=[450:632 148:345] class=1 [leaves) content]dassind:pba

obj009: 191,362 size=2425 bbox=[332:192 164:220] class=3 (shells) content{classind: pooe!

olj010: 221,92 size=2419 bbex=(68:117 191:252] dass=2 (nuts) contenbclassind:pieels)=

obj011: 268,260 siza=1590 bbax=[230:287 248:288] class=2 (nuts) contant{classind: poois)= 2

obj012: 317,347 size=1393 bbax=[315:382 302:337] dass=1 (shells) content{dassind:pocels)= 2:102 3:5 4:1284 5:2
obj013: 357,383 size=1512 bbox=[368:400 322:184] class=3 (shells) content{classind:poaels)= 2:93 3:0 4:1419 5:0
obj014: 387,195 size=2095 bbox=[161:222 331:445] dass=1 (leaves) content{classind:puels)= 2:2005 3:0 4:0 5:0
obj015: 460,505 s2a=7915 bboxs[454:558 405:505] class=2 (nuts) contant(classind: pooels)= 2:366 3:7473 4:76 5:0
obj016: 471,288 size=1158 bbax=[259:315 457:486] dass=2 (nuts) content{classind: ptoels)= 2:124 3:968 4:66 5:0
16 objects found: the smallest object: 1127 peels

In order to define object ground truth, we use the Regions tool an annotate individual objects assigning
them to their respective classes:

L perClass Mira

File View Data Classification Regression Camera Window Help

o N » M B B < [« m =

Preview oL Mo labels Labels Decisions Errors Regions [eliflas Model search Retrain

———— =
Classes X & X = IF I w

Unknown s
background

leaves

nuts m
shells

wood

e il]

natural_objects2

Now we can estimate the object confusion matrix by switching to the Confusion matrix panel, selecting
Objects. We right-click to open context menu and select Object confusion matrix:

perClass Mira Documentation

Object confusion rmatrix

Set matching criteria (minimum IoU)
Show log of matching regions to objects

Confmat decrease size

Confrmat increase size

Copy to clipboard as image
Dark background

The object confusion matrix collects information from labeled regions (our ground-truth) in rows o and

classifier decisions in columns g .

Note, that when only a single image is selected (like in our case), moving over the confusion matrix will
highlight regions and object bounding boxes represented by the respective field. In our example, we can
see both ground truth shells and shell decisions (object bounding boxes).

TIP: Note textual explanation available for each confusion matrix field in the top of the panel.

Detailed information on object matching

Apart of the square confusion matrix part summarizing all object decisions matched to the ground truth, the

o

object confusion matrix also collect information on all object decisions 9 and all labeled regions

The decisions section 9 clarifies how many object decions are not matched to the ground truth. This is
important to understand false detections that may pose significant burden in sorting applications. The

(4]

labeled regions section
classifier.

provides extra insight on labeled regions that were not identified by the object

59/191

perClass Mira Documentation

Example of interactive inspection

In the example below, we hover with the mouse pointer on the field o . This highlights single region from

leaves class that was not found 9 . The Output window shows a log of all matches between the ground
truth regions and object bounding boxes. We can see that the reg2 region could not be matched as the
default 0.5 level of the loU (intersection over union) measure to any of the bounding boxes.

Copying confusion matrix

Object confusion matrix can be copied as image or as text.

Copying object confusion matrix as image

5 ‘ U ‘

Object confusion matrix
Set matching criteria (minimum IolU)
Show log of matching regions to objects
Confrmat decrease size
Confmat increase size
Copy to clipboard as text
Dark background

When copying as image for presentations, you may wish to disable dark background via context menu:

60/191

perClass Mira Documentation

3 2 5
4 1 5 a 5
4 1 5
ood
2 1 3
1 1 2
15
3 4 4 2 2
15
5
1 a [u] 1 a
2
20
4 4 4 3 2
17
1 2 3 4 5 labeled regions
leaves nuts shells wood Unknown found not-found total
1: leaves
0 0 3 2 5
2:nuts
4 1 5 o] 5
3z shells
4 1 5
4z wood
2 1 3
5z Unknown
1 1 2
dedsions s
matched 3 4 4 2 2
15
dedsions .
not-matched L 0 0 0 0
2
total 20
dedsions 4 4 4 3 2
17

Copying object confusion matrix as text

Copying confusion matrix content as text is useful, when you wish to perform further analysis of the results
e.g. in Excel.

61/191

perClass Mira Documentation

4 ‘ 1 ‘]

Object confusion rmatrix

Set matching criteria {minimum IoU}
8 show log of matching regions to objects

Confrrat decrease size

Confrrat increase size

Copy to clipboard as image

Copy to clipboard as text

Dark background

Book? - Excel

Page Layout Farmulas Data Review =" Help Q Tell rme what you w.

e _

B % Calibri = |£| . @ m F= Conditional |
g EE] * 1 rFormat asTa

aste - = = = %= 3= -

B} B 1 U = = = === ‘.‘u'E .'P.E (7 Cell Styles ~
Clipboard] Font] Alignment] Mumber] Style
B1 - Je Decisions

A B C D E F G H J
1 |DECISIDHS.I Labeled regions
2 | L:leaves 2:nuts 3:ishells 4:wood S:Unknow Found Mot-founc Total
3 |L:leaves 3 0 0 0 0 3 2 5
4 _2:nut5 [1] 4 0 1] 1 5 0 5
5 |3:shells 0 0 4 0 0 4 1 5
6 _4:wood 0] 1] 2 0 2 1 3
7 |5:Unknown 0 0 0 1] 1 1 1 2
8 |Decisions matched 3 4 4 2 2 15/15
8 |Decisions not-match 1 0 0 1 0 5-Feb
10 |Total decisions 4 4 4 3 2 17/20
11
12

Visualization (spectral indices)

perClass Mira provides an interactive visualization tool enabling the user to define custom spectral indices
highlighting different aspects of spectral data. By a spectral index, we mean a quantity computed from

spectral information at a pixel level.

For example, one commonly-used spectral index is NDVI which, in broad terms, highlights a difference
between visible and near-infrared reflectance. It is used in remote sensing in order to estimate vegetation
coverage NDVI = (NIR - RED) / (NIR + RED). In the NDVI equation, the RED and NIR terms corresponds

to integrated reflectances in Red (visible) and near-infrared areas of the spectrum.

In perClass Mira, visualization or spectral feature extraction tools allow the user to define her own spectral
indices either based on wavelength specification or interactively, While the former lets us work with spectral
indices defined in literature, the later provides a powerful way of discovering hidden signal in spectral data
by interactive experimentation with a direct visual feedback.

62 /191

perClass Mira Documentation

In order to use the interactive visualization, we organize perClass Mira screen in the following way: We

position the Visualization panel

above the Spectra

Spectra X 2

We may select the type of spectral feature (generic equation) in the combo box located in the Visualization
panel.

Model search Retrain Show unknown
Visualization *

&dd spectral feature
Al

AfB

1/A-1/B

(A-B)/(A+B) Min 0.00

(A-B)/(C4D)

Color mmap

Backgro

(A-B)/sari{A+B)
Af(B*C)
log(1/A}
A(1/B-1/C)

We select the (A-B)/(A+B) equation covering the NDVI type of index discussed above. A new spectral

feature is created called "F1:(A-B)/(A+B)". We click on the new entry o in the list box. The spectral
index is then computed for every pixel fo the image using default definition of A and B spectral ranges. Pixel
intensities are integrated (summed) in the specified A and B spectral ranges. For example, R_{1451:1489}
(in LaTeX notaion) means integrated reflectance between 1451 and 1489 nm. Each of the spectral feature

63/191

perClass Mira Documentation

parametes (in our case A and B) are also highlighted by colored bars in the spectral plot e . Note that
the equation is displayed in the Visualization panel using wavelength definition in nanometers. The
parameters listed can be also changed directly by specifying the wavelengths. When hovering over the

©

image, the floating point spectral feature value is displayed in the status bar .

Adjusting spectral features

Spectral features may be adjusted in two ways:
1. Interactively
2. By specifying the wavelength ranges

Interactive spectral feature definition

We may adjust the current spectral feature, selected in the list box, by dragging the color bars,
corresponding to its parameters, in the spectral plot. When dragging the bar we change its position.
Alternatively, we may control its boundaries by dragging the bar borders.

TIP: Hold Ctrl to always drag the bar. This is useful if the bar is narrow and simple click-and-drag would
result in change of the bar boundaries

Specification of wavelength ranges
When the spectral index definition is provided in literature by wavelength ranges, we may directly specify it

for each of the parameters o .

64 /191

perClass Mira Documentation

Visualization X

Add spectral faature -

F1:(A-8)/(A+B

Spectra X

Note, that the actual number of spectral bands is displayed next to each parameter e . In our example,
each of the two parameters is computed by integrating content of two spectral bands.

In the following example, our wavelength range for parmater A o does not cover any existing spectral

bands in our image. This is indicated by zero bands e and a warning in red. The entire image is then

also displayed in red - the default "invalid" color 0 .

65/191

perClass Mira Documentation

Visualkzatio

Add spectral feature

FL:(A-B)[A+E Invalid

| F Max 0.84950

Scaling spectral features

Auto-scaling
By default, visualization of spectral features is auto-scaled. This is indicated by the Auto scale checkbox

66 /191

perClass Mira Documentation

= perClass Mira

When switching between different images, the minimum 9 and maximum 9 value is adjusted based on
the current image. While this is useful for a quick understanding of the data, we may want to fix the
visualization to a single range. This makes the visualization comparable for all images. We may do just that
either by disabling the Auto scale checkbox or by adjusting the Min and Max edit fields.

Manual scaling
When adjusting minimum and maximum range values manually, we may notice that some pixels are

displayed in green o or cyan 9 . These correspond to pixels below or above the current visualization
range. You may adjust the colors by the respective color swatches.

Applying feature extraction to foreground

By default, spectral feature extraction is applied to all image pixels:

67 /191

perClass Mira Documentation

Spectra X

If a pixel classifier is defined, we may focus the analysis only to specific classes by selecting these as

foreground o :

Spectra X

Note, that, when applying the visualization only to the foreground, the auto-scaling adjusts the min and max
boundaries based on the foreground pixels.

Colormaps

The color map of spectral feature visualization can be selected using the combo box o

68 /191

perClass Mira Documentation

We may choose from several predefined colormaps or create a custom colormap definition by selecting
New.

For some colormaps, it may be useful to set the background color to avoid confusion. We may do that
using the Background color swatch.

In this example, we set the gray level color map and make the background distinct. This allows us to spot
fine patterns in the foreground more easily.

TIP: You may adjust transparency of the background color in the color dialog using the Alpha channel field.
255 denotes opaque and 0 fully transparent layer.

Example of custom color map definition: Select New in Color map combo box. Define the colormap steps

and colors interactively and name the color map.

69 /191

perClass Mira Documentation

Add spectral feature Mame: F1:(A-B)/(A+B)

Fl:(A-B)/(A+8

= Edit Color Map

Hame |gold

The new color map will be saved in mira.ini file. When clicking on the color map widget, a context menu
provides number of additional options:

Color map gold

Min -0.3902: & .. Edit stop color
B Add stop

Remove stop Invalid

Backaround Below

Edit color map

Flip color map

Add color map
Rermowve color ma p

Duplicate color map

Copy to clipboard
Paste

Save to settings

perClass Mira represents color maps in a simple string format that cane copied, edited by the user and
pasted back in the application.

The mira.ini file will contain our new color map definition as a text string.

[col or map]
gol d="gol d; 0 0,0, 0; 0. 625 255, 240, 24; 0. 829 255,7,52; 1 255, 255, 255; "

The content in double quotes specifies fully the color map. It is a list separating fields by semicolon. First
the color map name is listed. Then, each of the color map steps is defined. Each step contains a 0.0 to 1.0
relative position followed by RGB definition of the color.

70/191

perClass Mira Documentation

Feature extraction (exporting)

perClass Mira provides numerous ways how to extract and export information from a single or multiple
images. The use case is to define classifier, segment objects or specify regions of interest and export user-
defined features to external file (Excel .xIs or XML). This data is the used for custom data analysis or further
research.

Let us walk through a basic example using Feature extraction panel. In order to extract data, we need to

specify
&l

¢ What pixels are included in the extraction

o Where the data is extracted from

2]

¢ What is being extracted

=, perClass Mira

£ 5’

Retrain Show

Feature extraction

Definition

In the first example, we want to extract mean spectra from objects. Therefore, we select Mean spectrum
from the Add representation combo box.

71/191

perClass Mira Documentation

Definition

Location What is represented

Computed by object segmentation Ohject pixels

Add representation

Spectral feature histogram
Spectral feature mean
Foreground pixel count

Class fraction

Regression output

Object count

Object shape: Feret diameter
Object shape moments

Object shape dircularity

You may select multiple representations

o perClass Mira

d repres

Mean spectrum 1

Images X £ %

atural objects]
atural_objects2 2

Select one of more images in Images list 9 and then File menu / Export and Export region features to
Excel. Note you may also export the same data into XML. That option is more convenient if you wish to
programmatically post-process data analysis.

72/191

perClass Mira Documentation

o perClass Mira

ﬂ Views Data Classification Regression Camera Window Help

_..
i

- | H B 5
pen project Ctri+0 =

ek Labels Decisions Emrors Regions

= |

L

[’
=]
o
1t

b
Ctri+S .
yject As ... Ctr+-Shift+5
et project data directory ... '
Add images to project ...
Remove images ...

Show n Explorer A8

Export per-image results to Excel

LA

vy
[i=]
-

Export object results to Excel

Export visualzation ...
Export Bbeled data to Mathb
Export Bbel images

T Export ENVI cubes

natural_obfectsi ;
atusliub}fe I Export ENVI cube (convert to BIL uintl6)

Export cube to Matlab

Export visualzation (float ima
Export regions

Export region features to XML
Export binned ENVI cube (BIP float)

You will asked for a name of a file to save. By default, perClass Mira exports to XLSX format. This allows for
more than 256 columns which is useful if we're exporting a lot of features per object, for example mean
spectra. If you prefer the legacy XLS format, you may choose it in the export dialog.

In the screenshot below we can see the structure of the exported data:

73/191

perClass Mira Documentation

exportxlse - Excel Pavel Paclik .

Pagelayout Formulas Data Review View Help @ Tell me what you want ta do

"' f: | [catba T da sl = 2 Wrap Text General -] m B B = B W %v Ay
Paste : B I U- | & & - 3= B Merge & Center ~ $ -~ 9 » % 2 | Conditional Formatas Cell Insest Delete Format | ° Sot& Find &

v Formatting = Table ~ Styles ~ v - " Filter ~ Select ~
Clipboard 1% Font & Alignment o Number & Styles Cells Editing ~
Al ~ £ ~

A B C D E F G H 1 J K L M N 2] P Q R | O

4 9 Mean spectrum
5 |Image Object Bounding box Object Contes band inde 1 2 3 4 5 [7
& |name name Celumn Row h Height decision present pixels waveleng 93561 952.89 970.19 98751 1004.83 1022.18 1039.53
7 |natural_objects2 objl 334 1 49 32 shells TRUE 127 0.418834 0.61078 0.620132 0.613909 0.616726 0.621849 0.625797 0.
8 [natural_objects2 obj2 478 1 125 128 leaves e TRUE 8360 e 0.359187 0461895 0.4688 0.469906 0473073 0476322 0.478664 0.
9 |natural_objects2 obj3 161 13 47 43 wood TRUE 1537 0.138756 0.258818 0.280243 0.29866 0.316507 0.334265 0.351406 0.
10 natural_objects2 obja 62 32 46 90 leaves TRUE 2739 0.257662 0.363636 0.370373 0.372552 0.374962 0.37812 0.379556 0.
11 |natural_objects2 objs 232 73 62 53 wood TRUE 2139 0.252241 0.328854 0.353295 0.373342 0.332379 0.410843 0.428108
12 |natural_objects2 obj6 336 75 a8 67 wood TRUE 3302 0.247954 0.328802 0.354568 0.375289 0.395374 0.415124 0.434162 0.
13 |natural_objects2 obj7 146 123 86 127 nuts TRUE 7017 0.312835 0404573 0409453 0.406818 0401605 0.355843 0.395225 0.
14 |natural_objects2 objs 451 149 183 198 leaves TRUE 26748 0.368264 0.442807 0.447981 0.449507 0.4514 0.453307 0.45472 04
15 |natural_objects2 objs 333 165 61 57 shells TRUE 2425 0.352831 0482109 0485118 047924 0430726 0484611 0.487408 0.
16 natural_objects2 obj10 63 132 50 62 nuts TRUE 24139 0.234806 0.335407 0.40122 0.338432 0.39235 0.337056 0.386051 0.
17 |natural_objects2 obj11 231 249 58 41 nuts TRUE 1590 0.365468 0.508502 0.518456 0.516615 0.514616 0.512984 0.51402 0.
18 |natural_objects2 objl2 316 303 68 36 shells TRUE 1393 0.386104 0.53286 0.52852 0.522129 0.526111 0.533979 0.541446 0.
19 |natural_objects2 obj13 369 323 33 67 shells TRUE 1512 0.240948 0.373026 0.371135 0.364137 0.369537 0.379022 0.38753 0.
20 |natural_objects2 objl4 162 332 62 115 leaves TRUE 2995 0.245307 0.37675 0.381109 0.3837 0.386549 0.350507 0.393138 0.
21 |natural_objects2 obj15 455 406 105 101 nuts TRUE 7915 0.370605 0.49079 0.49658 0.4918%8 0.4383739 0.475624 0.474846 0.
22 |natural_objects2 obji6 260 as8 57 30 nuts TRUE 1158 0.372948 0.527443 0.537544 053582 0.532799 0.529806 0.530455
23 |natural_objectsl objl 313 4 60 43 wood TRUE 1837 0.19693 0.275119 0.298537 0.317987 0.336932 0.355497 0.373527 0.
24 | natural_objectsl obj2 44 21 188 97 leaves TRUE 11140 0.35793 0.430531 0435068 043767 0.430422 0.443469 0445498 0.
25 | natural_objectsl obj3 223 72 62 53 wood TRUE 2231 0.26420% 0.235987 0.360361 0.3830526 0.399792 0.418379 0.435768 0.
26| natural_objectsl obj4 336 74 88 67 wood TRUE 3356 0.260755 0.338152 0.364111 0.385229 0.405561 0.425548 0.434614 0.
27 | natural_objectsl objs 7 118 177 94 leaves TRUE 7627 0.265864 0.232565 0.334761 0.336302 0.338404 0.340751 0.342429 0.
28 | natural_objectsl obj6 310 144 50 68 shells TRUE 2513 0.316587 0.435052 0.437351 0.431732 0.433359 0.436658 0.439768 0.
29 | natural_objects1 obj7 239 175 41 58 nuts TRUE 1708 0.386804 0570502 0.584084 0.583087 0.581207 0.579673 0.581058 0.
30 | natural_objectsl obj8 392 177 64 54 shells TRUE 237 0.372631 0.495365 0.49744 0.49143 0493097 0.497032 0.4%9977 0.
31| natural_objectsl objs 442 201 180 201 leaves TRUE 27240 0.376576 0442941 0.446655 0.447628 0.449241 0450948 0.452186 0.
32 | natural_objects1 obj10 110 242 93 89 nuts TRUE 5960 0.332146 0.415501 0.419814 0.416104 0.409281 0.402252 0.401151 0.4
33 | natural_objectsl obj11 320 255 58 33 nuts TRUE 1328 0.438548 0.658507 0.671276 0.668415 0.665356 0.662282 0.663227 0.
34 | natural_objectsl obj12 240 264 43 67 shells TRUE 2411 0.360104 0476716 0477188 0.470221 0.471511 0475606 0.47873 0.4
35 | natural_objectsl obj13 338 339 64 45 shells TRUE 1451 0.382345 0.534721 0.529953 0.522595 0.527041 0.535618 0.543633 0.
36 Loatusal ohinstel Jnhitd 113 248 3 A2 nute. TRLIF 651 0 26RIST N AANIGT 0 ARSETT N ARINIR 0 ATSST? 0 JARRSIT NARTSRL 0.7

Objects ® <] 3
Ready 81y Accessiility: Good to go PR Disploy Settings B [0 [- ————+ 100%

Obijects of each selected image are described by rows. For each object, we can see the scan name o
followed by an object name. When exporting object segmentation, the object name is automatically
assigned in the segmentation procedure. When exporting content of user-defined regions, the region name

is used. This can be user-assigned. For each object, its bounding box e 9
is provided. The Content present column shows o whether there is content represented in this
object/region and if so, how many pixels. When exporting objects, the content is always present. When

exporting regions, this may not be the case.

Finally, the section e contains the exported data. In our case, the columne correspond to individual
wavelengths of the mean spectra extracted for each object.

and per-object decision

Extracting multiple features

We may specify multiple features to be extracted from each object/region.

Say, we wish to extract two spectral indices and some shape representation of each object. We have

reprensetation in the Add representation combo to include it in the list e .

defined two spectral indices. We need to select a specific index and then choose the desired

741191

perClass Mira Documentation

Definition

| feature mean
2 Spectral feature mean

Available feature types

¢ Mean spectrum - mean spectrum computed using all pixels specified

o Spectral feature histogram for the selected spectral feature. The min and max boundaries, defined in
the Visualization panel, are used and split into 20 bins.

¢ Spectral feature mean for the selected spectral feature
¢ Foreground pixel count

¢ Class fraction for the class selected in the Class list

¢ Regression output for the selected regression variable
¢ Object count within the region

¢ Object shape: Feret diameter - shape representation providing minmum and maximum caliper
distance for the object mask

¢ Object shape moments - a set of 7 Hu shape moment invariants and an object eigenvalue ratio

¢ Object shape circularity describes how far from a cirle is certain object shape. Three features are
provided, namely Circularity, the Area/Perimeter ratio and the Perimeter.

In our example, we defined the following features:

Spectra Feature extraction X

Definition

Location What is represented

Computed by object segmentation Object piels

Add representation -

Spectral feature mean (F1:(A-B)/(A+B))
ectral feature mean (F2:A/B

Object shape: Feret diameter

Object shape moments

Object shape circularity

Below screenshot of the exported Excel file with indicated 5 feature groups.

75/191

perClass Mira Documentation

= " Pavel Paclik .

Insert Pagelayout Formulas Data View Help Q) Tellmewhat youwant to do

.t Calibri e cla s =E=E ®- Bwee Gerieral - Er: B [Es E] Z. AutoSum - %‘{' p
Pae D OPf T 2 Y = e s @ | o B | Sort& Find &
°f‘° & Forrnat Painter B T U- - O~ A~ | === 2 2= EMegeeConter - $ - % » 9o Foc::mn:io:;k 1;::::1“ s.’l:c‘r n;:g'l \m grfn“ Pt p‘.:,,k'.m,
Clipboard [} Font & Angnment & Humber % styles Cells Eddting ~
L4 - j Mean of spectral feature (F1:(A-B)/(A+B))
L | v | & L M | N o | p | a R s T U v w X | ¥ |z AA | AB AC AD
1
2 1 by object segmentation
3 pixels
0l [Mean of sbectral feaMean of spectral feaFeret diameter Shape moments Circularity
5 Content min Feret max Feret hi h2 h3 h4 hs hé h7 Eigenvalue ratio Circularity Area/Peri Perimeter
6 present pixels
7 TRUE 1127 0.204476 0.997617 32 49.50757 0,181744 0.003928 0.001308 4.16£-05 -9.7E-09 -2.6E-06 -4.7E-10 0487143 0926102 9.162601 113
8 TRUE 8360 0.217082 0.996437 109.7414 159.6001 0228769 0.008614 000766 0000504 -94E-07 -44E-05 3.19E-07 0.4401%4 0.297744 14.07407 54
9 | TRUE 1537 -0.30486 1.035346 4048251 36.60568 0.17028 0.002702 2.08E-05 1.14E-06 -2.5E-13 3.22E-08 5.54E-12 0.532239 0.523%4 5.005208 192
10 TRUE 2739 0323979 0.9948 45.00853 90.35846 0.200102 0.013146 0.000474 2.32E-05 -2.2E-09 -2.6E-06 TE-10 0.271477 0.340367 8.613208 218
11 TRUE 2199 -0.26614 1.028569 5171675 63.36978 0.165841 0.000724 0.000282 1A49€-06 1.39E-11 -8.6E-09 -2.7E-11 0.720883 0531576 9.644737 228
12 TRUE 3302 -0.25182 L.031156 51.51373 95.82556 0.20884 0.015709 0.000146 2.156-05 1.11E-09 1.1BE-06 4.7E-10 0.249887 0376453 9.345783 3
13 TRUE 7017 0.302365 0.990884 86 132.9450 0.192072 0.005246 0.001266 0.000199 9.13E-08 128605 46-03 0.452343 0249072 11.79328 595
14 TRUE 26748 0.068261 0.99884 1710076 204.7081 0.162104 0.000505 8.42E-05 5.03E-07 117E-12 5.34E-09 3.066-12 0.756541 048209 3203353 835
15 TRUE 2425 0.250386 0.997772 45.33578 7081348 0175424 0.005293 L37E-06 6.08E-08 132E-14 2.71E-09 1.16E-14 0.413708 0.414938 §.948339 271
16 TRUE 2419 0.292993 0.990937 50 65.99934 0.175076 0.002721 0.00025 118£-05 -3.76-10 -2.96-07 -5.26-10 0.540922 0.498255 9.793522 247
17 TRUE 1590 -0.00305 0.998693 3515384 6209783 0.188428 0.009368 0.000153 5.44E-06 -L5E-10 -5.36-07 3.496-11 0.321303 0.450117 7.794117 204
18 TRUE 1393 0.163517 0.987297 27.20432 7361501 0.251741 0.036776 0.000616 5.156-05 -7.98-09 -9E-06 5.14E-09 0.135216 0.408527 6729469 207
19 TRUE 1512 0.468144 0.980172 3233545 68.2677 0.209584 0.018006 0.000222 4.9€-05 4.956-09 S5.656-06 1.286-09 0.219327 0.475009 7.56 200
20 TRUE 2555 0.41342 0.993984 3614856 122.4902 0.343365 0.08636 0.004697 0.001472 3.61E-06 0.000323 -L4E-06 0.077669 0.273438 8.072776 371
a TELE e LELE SR LR 101113 £AtA A& ANOOT_ADOAANE 3 JEE N6 EETEL] A EE OG LI 11N LAAIIR NASENIT 16 GRAGS ARE
Objects ® [0
Ready 2 33 Accessibility: Good to go BobplaySettings | BH | M 0 - ——4——+ 0%

Extracting from region grid

In some applications, we may wish to extract data from user-defined regions. For example, in plant
phenotyping, each plant seedling may be defined by a region. In perClass Mira, we can use the region
annotation to drive feature extraction. The advantage of featue extraction from regions is, that we may
detect absence of data in a cell (for example, when the seed did not germinate).

When using regions for feature extraction, we have few options how to define what pixels are included in
the processing:

76 /191

perClass Mira Documentation

Spectra Dbjects Frame Recording Feature extraction X Confusion matrix A

Definition

Location What is represented

Fixed by image regions 1 i All foreground pixels inside a region

Add reprasentation 2 Al object pixels inside a region

Pixels of objects with centroids inside a region
Spectral feature mean (F1:A/E 3 ot o 1 CENLOIEs sk 22l

The option o simply includes all foreground pixels within the region. The option 9 only considers the
object pixels. Therefore, pixels of small objects (with size smaller than the defined minimum object size) are

not included. Finally, the option e includes only pixels of objects with cetroids within the region. This
excludes e.g. a leaf extending from a neighboring germination cell into our region.

Defining region extraction template

If the regular region grid is applicable to multiple scans, we may set one of the images with the desired
region definition as a template.Select the Set image as region template in the Images context menu. The
image is then marked with the light blue/cyan color.

Images X

m Add images to project ...

natural_c
Flag images as test

Remove images ...
Set project data directory ...

Remove point annotations

Export visualization ...

Set image as region termplate

Show in Explorer

The Location in Feature extraction panel can then be Fixed by template regions.

771191

perClass Mira Documentation

Spectra Feature extraction

Definition

Location What is represented

Fixed by template regions All foreground pixels inside a region

Add representation

Spectral feature mean (F1:(A-B)/(A+B))
egture mean :

Object shape: Feret dameter

Object shape moments

Object shape circularity

The same set of regions from the template image is then used when exporting data. Only one template can
be selected in a project.

Exporting into XML

When exporting into XML using File / Export / Export region into XML menu command, we obtain an XML
file with the following structure:

1 frxml version="1.6" enceding="UTF-8"?
* cak t_representation sxmlns="http:/ perclass.com/mira" version="perClass Mira 4.2 (28-feb-2023)"
Computed by object segmentation 1
) nted>All object pixels</what
" name="Spectral feature mean (F1l: [(A+B))" type="spectral_feature_mean"/>
name="Spectral feature mean (F2: ' type="spectral_feature_mean”
name="Object shape: Feret diam o
name="0bject shape moments"
name="Object shape circularity®
- bjects2"
hd computed™ name="objl" bbox="334 1 49 32¢ e
i ="spectral feature mean (J(A+B))" 1127">0.204476</representati
S 1 ="true” pixels="1127">0,997617- nt
- index="2" type="computed” name="obj2" bbox="478 1 125 128">»
f(A+B))" present="true" pixels="8360">0.217082</representation>
present="true" pixels="8360">0,096487< / representation>
- index="3" type="computed” name="obj3" bbox="161 13 47 43">
n index="1" name="Spectral feature mea 1/ (A+B))" present="true” pixels="1537">-@,304859</representatior
ion index="2" name="Spectral featur " present="true" pixels="1537">1,83535
The section lists the features (representations) used. Then, for each image , each object a is
described with extracted data for each representation .

Regression modeing allows us to estimate numerical quality parameters from spectral data. For example,
we may wish to estimate sugar content in a tomato or mixing proportion of powders. In perClass Mira,
regression is performed at object level. Therefore, we need to define pixel classifier and one or more
classes of interest. Then, we can assign external numerical values to each object and build a regression
model. This model is then applicable to objects detected in a hew image and can provide e.g. an estimate of

78/191

perClass Mira Documentation

sugar content per tomato.

In this example, we use the powder data set with vials containing mixtures of two powders, namely flower
and soda. Our goal is to train a model that will be able to estimate the mixing propotion for a new powder
mix.

We have loaded the first scan with powders:

= pert

Images X F X

powder_powder-SF-smal-dosed-1_2019

Step 1: Pixel classification

In the first step, we create a pixel classifier. We only care about good wuality segmentation of the powder
content at this step. In our example, we define classes of background, paper label, vial and powder. Our
classifier decisions look like this:

79/191

perClass Mira Documentation

Step 2: Object segmentation

In the second step, we create an object segmentation. We flag the powder class as foreground and click
on Obijects to perform the segmentation.

Images ®

x
powder_powder-SF-smak-dosed-1_20149

You may use more then one foreground class in regression. For example, you may build a model with
separate pixel classes for white and dark grapes, flag both as foreground and use both in regression
modeling.

Step 3: Object annotation

In the third step, we annotate individual objects with numerical values denoting the true mixing proportion of
powders. We use the following image describing the ground-truth:

80/191

perClass Mira Documentation

- 505/50F .'E-E-SJWF

805/20F 90S/M10F

For each powder object, we add a single number that corresponds to the percentage of soda in the sample.

We can add an annotation from Regreesion menu with Add or update point annotation command:

m perClass Mira

File WView Data Classification Camera Window Help
Add or update point annotation P
: Import point meta-data
Preview Remove point annotation ...

Classes o Remove point annotations

Unknown Create regression data set
background
paper label
vial

| Clear regression cache

1

Set point radius

More convenient is to use the keyboard shortcut. We position the mouse pointer on top of the desired

81/191

object and press P (for point). A dialog will appear:

= Point annotation

Annotation

Cancel

We may directly type in the numerical ground truth value, in our case 20 and press Enter twice (the first
time to confirm entering the value, the second time to confirm the dialog):

= Point annotation

Annotation

variable

Cancel

A new point annotation will appear in the image positioned on our original mouse pointer location

Each point has a unique number in the project which is assigned automatically. We may move the point
around. By doible clicking the point, we may edit the attached values.

In our example, we fill in mixing proporttions for all objects:

w. perClass Mira

File View Data Clssfication Regression Camera Window Help

o ERIE H [« [« g |
Objects

Preview [N Mo labels Labels Decisions Errors Regions Model seq

Classes X

Unkno
background
paper label
wial

Images X *

nowder_powder-SFsmal-cosed-1_2014

col:626) band:113 wavelength:1326.18[nm] val:0.0146744 object label:0 'background’

Step 4: Regression modeling

In the fourth step, we will build a regression model. We open the Regression panel (if not visible, enable it
in the Window / Panes menu)

Camera Wmduw Help

I Panes Y ™ Classes

Perspectives b Images
abels Lapes Uedsions e

[objects

[0 confusion matrix
O visualzation

[0 Feature extraction

Spectra

O camera

O Recording

O Frame

[stage

D Sync

[cCross validation
[Benchmark
O output

We can now perform regression Model search using the button

Model search

Regression plot

Similarly to the classification, the regression model is automatically built and the results are reported in the
Regression panel:

perClass Mira Documentation

Spectra | Regression X
Varables Dataset | Model Visualzation
Preprocessing none

Model search Retrain model Apply model to data Apply model to this image

Regression plot Statistics Errors

1

Training set (R™~2=0.995891)
Test set not avaiable

Specifically, the regression plot o will show number of red points 9 . Each point corresponds to one
object. The red color denotes training objects.

Step 5: Defining test data set

Similarly to classification, in regression modeling it is very important that we build sufficiently large and
representative test set. We need the test set to estimate performance of our regression model on example
unseen in its training.

In perClass Mira, test flag applies to entire images. Therefore, we need to include at least one more image
and annotate its objects with the numerical gound truth.

85/191

perClass Mira Documentation

Regression plot

Traning s
Test set not

We have added a new scan using the context menu in Images list and Add images to project... command

o . We apply the classifier and annotate the new objects 9 with the respective ground truth taken from
our external annotation source (not shown). We follow the process in the Step 3 to annotate the new

objects. Finally, we flag the new image as test via the context menu and Flag image as test command 9 .
The image color will change to green to indicate its test status.

We can now rebuild our regression model by pressing Model search in the Regression / Model tab o :

86 /191

perClass Mira Documentation

Regression plot

The red points do not change, because identical information is used in training. However, we will see a new

Step 6: Improving regression model

set of green points referring to our new test objects.

There are number of ways we can understand performance of a regression model and improve it.

In order to understand performance, we can
¢ Visually judge regression results in the regression plot
¢ Inspect number of commonly used performance measures

o Use the outlier plot visualizing difference of the data from the regresion model (for any any detected as
it does not need ground truth)

¢ Use the error plot to visualize differences of estimated values from the ground-truth

We may improve the regression model by

¢ Using only subset of spectral bands

¢ Using specific data preprocessing

¢ Curating the training set by removing suspicious samples or outliers

Regression plot

Regression plot serves for quick visual overview of the regression model performance. In the X-axis, the
ground-truth for each annotated point is given. The Y-axis represents the estimated value. Red points
correspond to the training set and gree to the test set.

When hovering over the plot, the details of the closest point are displayed in the status bar

87 /191

perClass Mira Documentation

Regression plot

Images %

We may jump to the scan of the nearest point using the context menu and Got to the scan of the point
command:

Go to scan of the test point P14

Auto scale reg plot

Copy plot as image
............................ Dark backgmund

Performance statistics

The Statistics tab provides a summary of the most common performance measures. Each measure is

estimated on the training set and on the test set .

88 /191

Spectra Regression

Variables Dataset | Model

Preprocessing none

Model search Retrain model

Regression plot Statistics Qutliers

statistics
r correlation
RMSE
RPD

-0.0308789
33.1662
Sep 2.12567

R~2=1-RS5/TS5S_trainSet
R™~2=1-RS5/T55_testSet
R~2=1-RS5/TS5_alsamples
Sample count

Visualization

Apply model to data

1

TR

-4.30349
33.1662
0.226%6

perClass Mira Documentation

Apply model to this image

acceptance
0.98
33.1662
2

The Acceptance column provides user-adjustable acceptance criteria for selected measures. The color of
the performance measure reflects the acceptance status. For example, when we set the acceptance for
correlation to 0.95, the accepted status in green and not-accepted in red will update.

Regression plot Statistics

statistics
r correlation
RMSE
RPD

Sep
R~2=1-RSS/TSS5_trainSet
R™~2=1-RSS/TS5 testSet

R™2=1-RS5/TSS_alSamples

Sample count

Outliers

Errors

TR

-0.0308789
33.1662
2.12567

acceptance
0.95
33.1662
2
-4.30349
33.1662
9.22696

Performance statistics may be copied out as text by selecting specific cells in the table and using Copy
statistics as text command. These values can be directly pasted into Excel table.

TIP Complex cross-validation schemes are easy-to-perform in perClass Mira using the Cross-validation

tool

89/191

perClass Mira Documentation

Outlier plot

The Outlier tab visualizes Outlier score for each object. It reflects the distance from the current regression
model.

In the following example, we can see the most outlying object is the P14 indicated in the status bar and

in the image by arrows.

Images ®

Note, that ground truth information is not needed when computing the outlier score. Therefore, it may help
us to understand any new observations.

Error plot

Error plot visualizes the difference between the ground-truth and the estimate value. Similarly to the Outlier
plot, the samples are sorted displaying all training samples and then test samples.

90/191

perClass Mira Documentation

Spectra Regression X

Variables Dataset | Model Visualization

Preprocessing none

Model search Retrain model Apply model to data Apply model to this image

Reagression plot Statistics Dutliers Errors

Training
Test

Context menu in the error plot provides commands to jump to a scan of a specific point, automatically
scaling the plot axis and copying the plot as an image.

Regression plot Statistics ~ Qutliers = Errors

Go to scan of the test point P12

Auto scale reg plot

Copy plot as image
Dark background

The example below originates from a different real-world project. It shows that we may easily spot
systematic errors do to strong grouping information presented in the error (or outlier) plots. The groups with
higher error may refer to different fruit varieties, producers, processing setting and similar.

91/191

perClass Mira Documentation

Duthers | Emors

Tramng set

Regression using subset of bands

By default, all available spectral bands are used when building the regression model. Similarly to
classification, we may precisely control the band subset.

In this example, we use Pixel visualization of the regression output to show that there is some issue with our
model when using the full spectral range:

Retrain

ctra Regression X

none

Retrain model

Regression phot

Images X

When we explore individual spectral bands, we can see that several first bands is highly noisy (not shown
here) and the few last bands contain strong image artifacts:

92/191

perClass Mira Documentation

and retrain the regression model using the Retrain button o . We may observe that the Regression plot

2] ©

shows improved performance and pixel regression output lacks any artifacts.

93/191

perClass Mira Documentation

Regression plt

Images X

Regressor and classifier band subsets
In perClass Mira, we may use a separate band subset for the classifier and for the regression analysis.

The context menu in the Spectra panel shows the two commands that allows us to select the bands in the
spectral plot based on the subset used when the last classifier or the last regression model was trained.

Show min/max spectra
Reset band selection
Clear band selection
Set subset by band indices AlE+S

Set band subset from classifier

Set band subset from regressor

[0 Auto stretch
dark I. bright
Set min display value

Set max display value
Copy spectral plot to clipboard
Dark background

Preprocessing

perClass Mira offers user-defined spectral preprocessing. This means that object spectra are not used as
is by the regression model but filtered. Three filtering methods are provided:

94 /191

perClass Mira Documentation

¢ Smoothing
o 1st derivative
e 2nd derivative

Each of the methods can be applied at a different spectral filter window size.

Preprocessing is set using the Preprocessing button o in the Model tab. When selected a dialog
will appear where the preprocessing method can be selected from a combo box.

Model Visualzation
Preprocessing none

Model search Retrain model Apply model to data

Re s
o Select preprocessing

Preprocessing:
none
smoothing, 5 pixels

smoothing, 9 poels

1st pixels

1st der., 15 pixels
1st der., 19 pixels
1st der., 27 pixels
2nd der., 9 pixels
2nd der., 15 pixels
2nd der., 19 pix

After confirming the dialog with OK button, the preprocessing is set and the mode needs to be retrained

9 . Itis recommended to run full Model search and not Retrain after changing the preprocessing
setting.

95/191

perClass Mira Documentation

Regression X
Varables Dataset | Model | Visuzalzation
Preprocessing 1st der., 5 piels

Model search Retrain model Apply model to data Apply model to this image

2

Regression plot Statistics OQuthers Errors

Training set (R~2=0.999966)
Test set (Q~2=0.976076)

In general, we may say that smoothing improves regression if the data set suffers significant noise and the
first derivative emphasizes the change of spectral change. However, it is not possible to say which method
will work best without proper testing.

Additional regression tools

Model search versus retraining

Similarly to classification, regression modeling offers two ways how to build a model using either Model
search or Retrain buttons.

The Model search employs search for optimal complexity followed by model trainig. The Retrain command
only retrains the model using the last selected modeling scheme.

General recommendation is to use the Model search in case of large changes. For example, when we
select a different preprocessing or different set of spectral bands it is better to perform full model search. If
only a small change to our data set is introduced, for example, when we investigate impact of a potential
object being removed, Retrain is more convenient as it reflects impact of only the single change made.

Applying to new images

The regression model can be applied to any scan (with or without ground truth) by selecting the scan

and pressing the Apply model to this image button 9 in the Regression / Model tab. The entire
processing pipeline is applied to the scan. This means, that the pixel classifier produces decisions, objects

96 /191

perClass Mira Documentation

are segmented and a bounding box 9 is displayed for each object showing the estimated regression
output.

Regresson plot

The Output panel shows detailed information on regression output. For each object a cetroid, size,

bounding box and the regression output o are given. In addition, an outlier score e is provided as
well. Low value of the outlier score (compared to training examples) means that the sample is similar to

training set where the model was trained. High score indicates strong deviation from the known training
examples. For training and test examples, the outlier score is also displayed in teh Qutlier plot.

Output X

Best solution (224 features): RMSECV=2.20429 1 2
Applying regression model:

obj001: 61,82 size=4974 bbox=[25:133 31:92] regoutput=80.371811 (conf 33.603260)
obj002: 65,302 size=6481 bbox=[237:365 33:97] regoutput=-6.637302 (conf 15.246118)
0bj003: 73,574 size=5251 bbox=[520:628 41:107] regoutput=-6.810875 (conf 55.745152)

obj004: 240,321 size=6275 bbox=[257:386 209:271] regoutput=33.779022 (conf 6.821933)
obj005: 241,559 size=5515 bbox=[504:614 210:272] regoutput=40.569855 (conf 4.479048)
obj006: 271,87 size=5240 bbox=[32:139 241:303] regoutput=20.701399 (conf 14.577522)

obj007: 424,326 size=6294 bbox=[263:387 392:456] regoutput=61.509602 (conf 3.066862)
obj008: 422,548 size=5588 bbox=[494:604 392:455] regoutput=75.292664 (oconf 4.765043)

In the following example, we apply the regression model trained on soda/flour mixture to a scan containing

also a vial with salt n :

97 /191

perClass Mira Documentation

ta Apply model to this mage

Traning set
Test set

The corresponding object 007 information is ightlighted with shows that the outlier score is >500.0

while the other samples show the range of 3.0-12.0.
Pixel visualization of regression output

When a regression model is built, we may apply not only at object level but also at pixel level using the

Regression toolbar button o
The pixel visualization of regression output allows us to understand inhomogeneities within the objects and
spatial distribution of the modelled phenomena.

Retrain model Apply model to data

Irages X & %
powder_powder-SF-smakdosed-1_2019

2]

The display shows only the foreground pixels. The Visualization tab
fine-tune the rendering of the estimated output.

provides number of options to

98 /191

perClass Mira Documentation

In the following example, we stretch min o and max 9 values of the rendering either via edit boxes or
by a mouse-wheel in the left-lower or right-upper corner of the regression plot, respectivelly:

varl ~ Mnwvae -60. - 115.481 > B Auto scale

phsma ~

Regression phot

After stretch:

s 0O Auto scale

oo

Regrassion plot

Images X £ x

powder_powder-SE-smakobsed-1_2019)

Note, that the floating point regression output does not change, we only affect its rendering via the specified
colormap and visualization settings.

For more information on colormap control, see the description in the visualization section.

99/191

perClass Mira Documentation

Spectral plot

Spectral plot o displays information on labeled data across all spectral bands. The horizontal axis shows
wavelength in nm. The vertical axis the pixel value. For the sake of image interpretation it is recommended
to use data converted into reflectance. In perClass Mira, specific project types correct raw data into
reflectance using whie and dark reference scans. Working in refelctance makes models more robust
regarding illumination changes.

The band widget 9 under spectral plot shows individual spectral bands available in all images currently
loaded in project. perClass Mira requires that all images use the same spectral bands/wavelength definition.

Class-specific display

For each class with labeled samples, spectral plot provides a mean spectrum. By default also the min and
max values per band are shown. The intention is to display extra information on variability of spectral signal
per class. The min/max spectral range per band may be disabled in the context menu:

Show min/max spectra
Reset band selection
Clear band selection
Set subset by band indices Al+S
Set band subset from classifier
Auto stretch
dark 1l bright
Set min display value

Set max display value

Copy spectral plot to clipboard
Dark background

100/ 191

perClass Mira Documentation

Spectra X Confusion matrix Regression

Display range and scaling

The vertical axis spectral values are by default set based on the first image loaded so that the most data is
visible.

By default, manual image visualization mode is active where the spectral value range, defined by the
spectral plot, is applied to all images. This means that switching between images, we see the same range
and the gray value (for Band display) or RGB value (for pseudo-color preview) represent the same value in
the data.

We may interactively adjust the bounds of the display value. This can be done either via the mouse wheel
when the mouse pointer is close to top/bottom of the spectral plot or by a click and drag operation.

Alternatively it is possible to precisely define the numerical display values from the context menu:

101/191

perClass Mira Documentation

Show min/max spectra

Reset band selection
Clear band seleckion
Set subset by band indices Alt+5
Set band subset from classifier
O Auto stretch
dark 1) bright

Set min display value

Set max display value
Copy spectral plot to dipboard
Dark backaround

Alterrnatively, we may enable the automatic stretch of display range. This mode stretches min/max of the
spectral plot and hence image display specifically for each image. This is useful to always "see" meaning
ful content in each image irrespective of its overall brightness or darkness. However, it is important to keep
in mind that a the same gray value or color in two images represents different raw spectral or refelctance

values.
The Auto stretch mode is enabled by the checkbox o in the context menu. The display stretch is based
on image content keeping certain percentile of image values in the view. This may be controlled using the

slider in the context menu.

Show min/max spectra

Reset band selection

Clear band selection

Set subset by band indices Al+S

Set band subset from classifier

L w
dark I 2 bright

Set min display value

Set max display value
Copy spectral plot to clipboard
Dark background

Adjusting display manually disables the Auto stretch function.

102 /191

perClass Mira Documentation

Band selection

Under the spectral plot, you may find the band widget o providing user-defined band selection. For each
spectral band in the data, we can see a corresponding round point. By default, all available bands are
selected (green) and, when a classifier or regressor are trained, used for building the model.

Spectral plot provide several commands allowing us to effective define and work with band subsets. Some
of these are highlighted by the red rectangle in the context menu screenshot:

[show min/max spectra
Chear band selection
band subset

Set band subset from classifier

O Auto stretch

_ dark l.

Set min dsp

clipboard

Manual band definition

Bands may be selected / deselected by clicking the individual round points in band widget. In order to
select/deselect larger number of bands, we may use "painting" i.e. click and drag. The status of the first
clicked band defines the action - either select or deselection of all visited bands.

Note, that the number of selected bands and the total number of bands are provided to the left of the band
widget:

103/191

perClass Mira Documentation

Band selection by commands

We may select and deselect all bands using the Reset band selection and the Clear band selection
commands in the context menu.

In order to have fine control on specific band selection, we may use the Set band subset command from
the context menu. Once selected, a dialog box appears that allows us to precisely define what bands should
be added or removed:

¥ Set band subset

Band subset (examnple: 100 120-140 204)
+ at the start appends, - removes from the existing selection
Use "each N" to togale each Nth band (example: +each 2)

|
@ Band (O wavelength

| oK | Cancel

By default we may specify band indices. Alternatively, by selecting Wavelengths the selection happens on
wavelength values in nanometers.

If we provide a range of bands, for example "10-30", we enable all bands starting with the 10th and ending
with the 30th band:

We may provide multiple regions at once separated by spaces. For example "10-30 35-42 45" will lead to
these three regions:

104 /191

perClass Mira Documentation

The default operation is to only enable the specified bands removing all previous state. Sometimes, we may
wish to add or remove bands from the current selection. This is possible by prepending our specification
with + (for adding) or - (for removing):

For example, selecting the Set bands command again and filling in "+3-5" will append three more bands to
the current subset:

Sometimes, we may wish to select bands with a regular step. This is possible with "each X" syntax. For
example, using "each 3" we get:

Band subsets used by models

When training classification or regression model, the currently selected set of bands is used.
Subseqent changes in the band subset widget do not impact bands of the model, unless we retrain it.

We may, however, anytime return to the band subset used for the current classifier or regressor using the
respective commands in the spectral plot context menu:

105/191

perClass Mira Documentation

[show min/max spectra

Reset band selection
Clear band selection
Set band subset AlE+5
Set band subset from regressor
Auto stretch
dark 1l bright
Set min display value
Set max display value
Copy spectral plot to clipboard
Dark background

Frame widget

Frame widget serves for detailed visualization of spectral cubes in both spectral and spatial direction. Its
primary use is in live acquisition mode for line-scan applications. In this setup, it provides a logical view of
the data transfered from a camera i.e. spectral frames. Each frame provides spectral responses for a line
of spatial pixels. Frame widget is useful in acquisition to understand camera focus, visually judge scan
borders, dead pixels or other artefacts.

Frame widget is enabled also for introspection of already loaded current spectral cube. Note the important
conceptual difference: While in live acquisition mode, the frame wudget shows raw spectral frames being
acquired, in the off-line mode it visualizes content of the current cube that is typically already corrected into
reflectance.

In the following screenshot, the frame widget shows one spectral frame in a loaded image. The area o
shows the frame content. Horizontally, the spatial pixels are provided. Vertically, the spectral information is

displayed. The colored lines in the frame widget are then further visualized in the spectral plot 9 and
spatial plot. The corresponding band and pixel indices are located on the top of the frame panel.

106 /191

perClass Mira Documentation

D &

Spatal € 161 = M 321 T Y 481 T Lne 277 %

Context menu on the plots exposes number of options:

o Switching between default dark and white background. White background may be beneficial when
using the spatial profile plot to judge camera on a structured pattern

9 Several options for plot scaling. The Auto scale provides automatic stretch based onthe data. Set
range from... options allow the user to set axis span from project, acquisition (frame) or saturation.

The plots can be copied to clipboard as an image

Frame X

Spectral R 12 5 6 23 } 34 & Spatial C

5 O Auto scale

Set range from project

Copy plot as image

Dark background

107 /191

perClass Mira Documentation

Stage

Stage panel provides full control of perClass Stage linear lab scanning device.

Cyde
Maowve laft

Mawe right

White start 0 mm White end 40mm =
Scan start 40 mm m 400 mMm -
O Limit travel speed Resat

Speed: 30 mmys 4 e - mmy's

Mot connected

The stage needs to be first connected using the Connect button

108/191

perClass Mira Documentation

The section contains three programmable buttons A,B and C available both on the Stage panel and as

physical buttons on the stage.

The section 9 provides position limits for the reference (White) and the scan area. Current position and
speed of the stage table can be read above the Connect/Disconnect button (after connection).

Finally, the section provides speed control slider. It can be used anytime, also during the movement.

Stage X
Move to white reference
Cycle scanning area

Scan and record

Move to start Move left Stop Move right Move to end

O Record white White start 10 mm
Scan start 40 mm

O Limit travel speed

Speed: 51 mm/s

= White end 40 mm

Scan end |300/mm 2

Reset

306 mm 0 mmy's

Ready

Disconnect

Stage commands

The following stage commands are available:

109/191

perClass Mira Documentation

¢ Cycle - cycle the entire table length (0-400mm)

¢ Cycle scanning area - cycle the scan area defined in the edit boxes. This is useful if your sampels do
not fill the entire length of the table

¢ Move left / Move right / Stop - movement commands. Note that they are also always present under
the programmable buttons

¢ Move to start / Move to end

¢ Move to center - This command is useful to "park" the table in the central position before dismantling
the stage

¢ Move to white reference
¢ Scan and record

Commands set by the user are restored in future sessions.

Camera

Camera panel provides control of acquisition from a connected device. In order to use a camera, it is
necessary to start the project with the respective acquisition plugin. Each such project is of "perClass"
type. This is a major change from pre-4.2 perClass Mira releases where vendor specific projects provided
acquisition control.

Camera panel displays speed information and plot with a separate line for the camera itself in cyan,
“classifier" meaning full processing pipeline in red and the total processing time in green.

Objects Feature extraction | Camera ¥ Confusion matrix Visualization Spectra

Camera speed 4 ms, 250 fps

Classifier speed

Total speed (incl.acquisition) 1.9 ms, 204.1 fp

Exposure: 4,00 = Frame rate: 10000 ~ Max frame rate: 10000
rmax raw display value 4094 band 173 =

Start

Speed Focus Auto-exposure Square pixels

Camera controls

Camera controls are:

110/ 191

perClass Mira Documentation

o Exposure (integration time) in miliseconds. Exposure-control of the camera is assumed where
exposure settings influences possible frame rate settings.

9 Frame rate in frames per second.If framre rate can be controlled by the user, it is provided
together with the maximum possible frame rate. For some camera types, user cannot change the frame
rate. Then, high default frame rate value is provided indicating that the device runs always at the
maximum achievable frame rate for given exposure time.

9 Band control allows the user to select specific sensor band used to display data layer in the data
visualization

] Maximum raw display value control sets the limit for raw data visualization. It is a zero-based value.
By default it is set to the maximum raw value - 1. When displaying image content for a single band, this
setting makes it possible to visualize saturations by the red/yellow pattern.

Objects Feature extraction | Camera ¥ Confusion matrx Visualzation Spectra

Camera speed 4 ms, 250 fps

Total speed (incl.acquisition)

Exposure: 4,00 10000 » Max frame rate: 10000

-
-

max raw display value 4094 = 2 band 173
Start 4 3

Speed Focus Auto-exposure Square pixels

Recording panel

Recording panel provides control for recording references and data. By default, perClass Mira imposes

data correction work-flow where dark and white references need to be acquired before data is recorded.
The motivation is to make sure that modeling is performed not on raw but on reflectance-corrected data.

This makes models more robust to illumination changes.

111/ 191

perClass Mira Documentation

Recording X

Comection

D Hone D Point @ Ling -::r||:||'| ._rnﬁ:urrr':t-,-} References scan "_'{:-Ec::u:

White Record white

2

Deark Record

3
4

Set from scan

The radio button group o allows selection of correction work-flow. The default "line (non-uniformity)"
means that full frame dark and white references are used correcting individually every pixel in the image.

The White e and Dark 9 references can be acquired from sensor by pressing the respective buttons.
Alternatively, it is possible to set the referneces from already recorded scan, selected in the Images panel,

o

using the button Set from scan

Acquired references

Once the references are acquired, their time-stamps o are and exposure times used 9 are listed.
Note, that references should be acquired using the same exposure as the data. If you change exposure
time, retake the references before acquiring data.

The Recording tab e becomes enabled once both references are available. For the correction work-flow
without references (None radio button), the recording is always available.

Recording X
Comection recording 3

O Mone QO Ppoint @ Line (non-unformity) References scan-specific

White Record white lewvel

acquired 2023-03-11_10-38-43 with exposure of 1.00 ms

Dark Record 2

acquired 2023-03-11_10-38-27 with exposure of 1.00 ms

Set from scan

112/ 191

perClass Mira Documentation

Recommended screen setup

Following screenshot illustrates the recommended screen organization for data recording.

Recording X

COrTection

® Lne (non-unformity)

+ Frame rate:

recordings, we recommend using also the Frame widget 9 under the data stream.

Both, the Camera and Recording panels are available above each other. For line-scan

Note, that as references are recorded in this example, the main toolbar in the Camera mode shows not only

Raw data button, but also Corrected data command .

Setting scan name

Once references are defined in the Correction tab of the Recording panel, the Recording tab is enabled. It
controls directory and filenames for scans to be stored.

Recording ®

Recording

Directory CifSpectrallmages 1

2

Scan

Add timestamp Add index

= Add to project

113/ 191

perClass Mira Documentation

The directory button o specifies, where the recorded scans will be stored. This directry is identical to the
project "Top-level data directory”, that can be set from the File menu or from the context menu in Images
list. The directory may be changed any time. Only the newly-recorded scans will be affected and placed in
the new directory.

TIP: Note, that perClass Mira never deletes or moves any scans. It is user responsibility to perform any
destructive actions on the data, if needed.

Important: Note that the scan name must be defined, in order to record a scan. When working with
perClass Stage, issuing Scan and Record command will not work unless the scan name is defined.

Once, the scan name is defined, the Record scan button o is enabled. By pressing it, both camera
acquisition and recording will be started. The user needs to terminate recording and acquisition using the

The scan field defines the scan name to be recorded.

same button , how having the Stop recroding label.

Recording X

Cormection Recording

Drectory C:fSpectrallmages

Scan |natural_objects

Add timestamp 2 3 Add index 1

Record scan Add to project

By default, time stamp 9 and index 9
increments after each recording.

are appended to the user-defined scan hame. The index auto-

TIP: When recording scans with training examples, it is recommeded to use only examples of one class
and use its name as a scan name.

Exporting

perClass Mira provides number of ways how to export data. Individual export commands are located in
File / Export menu.

The following high-level export options are present:

¢ Per-image results - for further analysis

¢ Per-object results - for further analysis

¢ Extracted features - for further analysis

¢ Visualizations - for display

¢ Visualizations as float images - for further analysis / external model training

114/ 191

e Cubes
o |abeled data
¢ Regions - connected to Region importing

o perClass Mira

m View Data (B tion Regression Camera Win

New project e
8]

Ermors Regions

Open project Cerl0
Open recent

Save project

Save project As ...

Set project data directory ...

Add images to project ...

Remove images ...

Show in Explorer

Export Export per-mage results to Excel
Quit Export object results to Bxcel

Export visualization ...

Export Bbeled data to Matiab

Export Bbel images

Export ENVI cubes

Export ENVI cube (convert to BIL uintl6)
Export cube to Mathb

Export visualzation (float image)
Export regions

atural_objects2 Export region features to Excel
Export region features to XML
Export binned ENVI cube (BIP float)

Exporting per-image results

The use-case for this export option is analyzing presence of certain important classes in many
images. For example, when detecting whether plants are infected by a disease, we segment a plant out of
background and flag plant parts and infection as foreground classes. This export option allows us to quickly
see whether the fraction of infection among all foreground pixels (representing a plant) is above acceptable
limits.

In order to export results per-image, select desired images in Images list and use the Export per-image
results to Excel command in File / Export menu

perClass Mira Documentation

Export Bbeled data to Mathb
Export kbel mages

Export ENVI cubeas

Export ENVI cube (convert to BIL uint15)

Export cube to Mathb
Export visualzation (float image)

Export regions

ort binned ENVI cube (BIP float)

ed cube

The resulting Excel file contains, for each image o the pixel count in each class 9 . Note, that
foreground/background object flags are also provided. Additionally, for all foreground classes, their

fractions within foreground are present .
A B C D E F G H 1 J K L M N o P a

1 -

2 version: perClass Mira 4.2 (9-mar-2023)

3

4

i class names background leaves nuts shells wood backgrour foreground leaves nuts shells wood

6 classisfore; FALSE TRUE TRUE TRUE TRUE pixels pixels

7

8

9

10 index image name o

1 1 natural_objects1 232337 43350 16614 7473 6517 247360 73960 0.586128 0.224635 0.101122 0.088115
12 2 natural_objects2 244622 37069 15262 6093 6139 259277 64563 0.574152 0.236389 0.084373 0.095085
13

14

o

Exporting per-object results

This export option provides detailed information on detected objects including their position and
per-object classifier decision. The use-case is building object classification solutions, for example, in
sorting and grading applications.

116/ 191

perClass Mira Documentation

ort per-im
Export object r

Ex visualkration ...

Export Bbeled data to Mathb

Export bbel images

Export ENVI cubas

Export ENVI cuba (sert to BIL uintls)

Export cube to Mathb

Export visualzation (float image)

Export regions

0 2]

, per-object decision by perClass Mira object classifier and brake-down of pixel counts in all

Exported results provide scan names

foreground classes

, training/test status in the project , Object size and bounding
box

. The last can be used to define and validate custom object classification rules.

A B C D E F G H I] K L M N
L :l
P wversion: perClass Mira 4.2 (9-mar-2023)
3
: @ (2,)
5 object object foreground classes
6 |index image name status index size col row width height decision 1:leaves Z:inuts 3ishells 4:wood
7 1 natural_objectsl training 1 1906 313 3 59 43 4 0 0 0 1662
8 1 natural_objectsl training 2 11575 41 21 150 105 1 9233 0 1 0
] 1 natural_objectsl training 3 560 511 48 48 28 5 51 0 0 0
10 1 natural_objectsl training 4 2327 231 72 64 53 4 o o 0 1950
1 1 natural_objectsl training 5 3566 333 73 91 67 4 1 0 0 2905
12 1 natural_objectsl training 6 608 566 106 35 28 5 19 0 0 0
13 1 natural_objects1 training 7 8060 72 118 181 97 1 6534 0 0 0
14 1 natural_objectsl training 8 2611 309 144 50 68 3 99 0 1906 0
15 1 natural_objectsl training 9 1795 238 175 42 58 2 81 1035 1 o
16 1 natural_objectsl training 10 2439 388 177 68 53 3 35 0 1614 0
17 1 natural_objectsl training 11 27559 441 200 181 201 1 26626 0 0 0
18 1 natural obiectsl trainineg 12 6169 109 242 95 89 2 19 4935 0 0

Exporting visualizations

Exporting visualization generates color PNG images with the exact visualization content for all
selected images. The use-case is to batch process large number of data and create visual representation
of a particular solution.

117/ 191

Export per-mage results to Excel

Export object results to Excel

Export visualzation ...

Export bbeled data to Matkb

Export label mages

Export ENVI cubes

Export ENVI cube (convert to BIL uintl6)
Export cube to Mathb

Export visualzation (float image)
Export regions

Export region features to

Export region featur

Export binned ENVI cube (BIP float)

Export preprocessed cube

Select one of more images in Images list and use File / Export / Export visualization... command. A dialog
box appears where the destination directory can be selected or a new one created. In addition, perClass
Mira requests an optional suffix appended to image names. This is useful to distinguish multiple
visualizations on the same set of scans or groups of scans (training, test, specific variety of a product etc.)

TIP: When working with many images, you may export visualizations and then get a quick view on many
images using Windows Explorer view thumbnails feature.

Visualization tips

Highlighting only specific classes of interest

For quick visual identification of specific detections, it is convenient to control alpha layer per class and
make unimportant classes fully transparent. This can be achieved by selecting specific class, using Alpha
toolbar button class and adjusting the transparency only for this class. For stronger visual contrast, you
may also make the background darker by adjusting the top of the Spectra plot.

= perClass Mira

Retran Show

Spectra X

Images % £ %

atwral obfects]
atural_objects2

Exporting visualizations as float images

By export visualizations as float images, we get data (Matlab .mat files) extracted from our spectral
images. The use-case is to define one or more custom feature indices, export the floating point data

perClass Mira Documentation

together with precise pixel labeling and perform further analysis or training of external models in Matlab,
Python or other machine learning environment.

Export per-image results to Excel

Export object results to Excel

BExport visuakzation ...

Export bbeled data to Matlb

Export Bbel mages

Export ENVI cubes

Export ENVI cube (conmvert to BIL uint16)

Export cube to Mathb

Export visualzation (float image)
Export regions

Export region feature
Export binned ENVI cube (BIP float)

Export preprocessed cube

In the following example, we defined three spectral indices o

9 and use File / Export / Export visualization (float image). We may then select or create destination
directory. For each selected image a .mat Matlab binary file is created with floating point spectral index
content and separate pixel labels.

. We select the scans we wish to process

Example on Matlab side:

>> | s

nat ural objectsl. mat natural objects2.

>> | oad natural objectsl. nat

119/ 191

mat

perClass Mira Documentation

>> whos
Nane Si ze Bytes d ass Attributes
cube 640x503x3 3863040 single
I ab 640x503 321920 wuint8

>> figure; inmagesc(cube(:,:,3)")

>> figure; inagesc(lab')

- B Figure 2
File Edit Yiew jnsent Tools Desktop Window Help 1 File Edit View |nsert Tools Desiiop Window Help =

DEde kN0 L- A 08 =0 Nade[kN 09« a08 =0

100 200 300 400 500 600 100 200 300 400 500 600

Comments:

¢ for each exported image a .mat file is present in the destination directory

¢ each of the files contains a cube and lab variables, respectively

¢ the cube variable contains a band (3rd dimension) for each of the spectral indices

¢ note, that we transpose the image content using ' operator to visualize images in the same way as in
perClass Mira

¢ the lab variable contains per-pixel labels defined in perClass Mira. Class indices may directly to the
class list in perClass Mira. Zero is the "unknown" - such labels are not present.

Exporting cubes

Exporting ENVI cubes provides a convenient way to get simple ENVI cube representation of images in
perClass Mira workspace. The use-case is further analysis of the images already converted to reflectance.

120/191

Export per-mage results to Excel

Export object results to Excel

Export visualzation ...

Export bbeled data to Matkb

Export label mages

Export ENVI cubes

Export ENVI cube (convert to BIL uintl6)
Export cube to Mathb

Export visualzation (float image)
Export regions

Export region features to Excel

Export region features to XML
Export binned ENVI cube (BIP float)

Export preprocessed cube

Upon selecting the export command, we may specify or create a destination directory and specify optional
scan name suffix. This is useful to provide extra information on exported group of images. For example, to
distinguish test scans or specific product varienty.

For each scan an ENVI cube is created saving two files, namely the ENVI data cube with .bin extension
and the text .hdr header file.

Notes:

¢ Images are exported in exact same representaion as in perClass Mira workspace. This means that, for
project types converting scans on load to reflectance, the exported images are stored as reflectance
(typically BIP layout, float data type)

¢ For images, that are cropped in perClass Mira workspace, only the crop area is exported, not the full
original image. Therefore, we may use this export type to convenniently focus only on relevant parts of
the scans

Exporting regions
Exporting regions enables us to store information on Region definition outside of perClass Mira project.
Possible use-cases are:

¢ performing analysis of object classification results in Excel or other software

¢ precise definition of regions outside perClass Mira. This is connected to aditional command Import of
regions into perClass Mira from Excel file

Example exporting regions defined on a scan to Excel: In the Regions mode , We can see regions

2]

defined. Note, that one of the regions has a text note attached.

perClass Mira Documentation

= perClass Mira

L] a

Zoomin Zoom out

3l 2

After using the Export regions command, we obtain the following Excel file:

® .0

For exach exported scan , each region is given including its name , bounding box , Class

and optionally also notes

A B C D E F G H
1 |
2 version perClass Mira 4.2 (9-mar-2023)
3 |format regions
4
5 object
6 |image name name column row width height class notes
7 |natural_objects2 regl 62 33 48 98 leaves
8 |natural_objects2 reg2 156 125 45 43 leaves
9 |natural_objects2 reg3 448 156 180 193 leaves
10 |natural_objects2 regd 532 3] 118 leaves
11 |natural_objects2 regs 70 190 51 61 nuts
12 |natural_objects2 regh 145 161 87 81 nuts connected to a leaf
13 |natural_objects2 reg? 449 409 108 94 nuts
14 |natural_objects2 regd 230 249 62 32 nuts
15 natural_objects2 regd 261 458 57 31 nuts
16 |natural_objects2 reglo 159 333 67 114 leaves
17 natural_objects2 regll 314 301 77 37 shells
18 natural objects2 regl2 367 326 35 63 shells

Importing regions

The use-case for region importing is precise definition, for example, when creating regular region grids
in plant phenotyping or using external labeling and annotation sources.

In order to import region definition from an Excel file, use Data / Regions / Import regions menu command:

122 /191

w perClass Mira

: MNew chss ... CtrlsN B -
Hew class auto-fil M S

Elle View m Chssification Regression Camera Window Help
” Decsions Errors
Classes X

Unknic

Edit class name
beaves
nuts
challe Merge class to ...

Remove cass Backspace

wood Random class color

Select class ...

Exclude chxs from tr
Images X

Irmage flags
natural ebfect

|
Crop mode - I'_r___.:

import regons

Edit mage name Remowve all regions

Add regions from current objects

Extending our export regions example, we now include an extra note to reg2 region in Excel and save the
file.

A B [D E F G H | J
1
2 |version perClass Mira 4.2 (9-mar-2023)
3 |format regions
4
5 object
6 |image name name column row width height class
7 |natural_objects2 regl 62 33 48 98 leaves
8 Inatural_ob;ectsz regl 156 125 49 43 leaves
9 |natural_objects2 reg3 448 156 180 193 leaves
10 |natural_objects2 regd 532 3 79 118 leaves
11 natural_objects2 regs 70 130 51 61 nuts
12 \natural_objects2 regh 145 161 87 £1 nuts connected to a leaf
13 natural_objects2 reg? 449 409 108 94 nuts
14 |natural_objects2 regh 230 249 62 32 muts
15 |natural_objects2 regs 261 458 57 31 nuts
16 natural_objects2 regld 159 333 67 114 leaves
17 Inatural nhiart<? reocll 114 T 77 17 challc

¢ In order to import regions, we need to first remove existing once using Data / Regions / Remove all
regions command (when specific scan or scans to be affected are selected in the Images list). Note,
that this follows general perClass Mira design principle of not destructing any information behind user's
back.

o After removing the regions, we can use the Data / Regions / Import regions command, point to the
updated Excel file

The new region definition now contains text note also for the region reg2. In this same way, we may create
entirely new regions or change positions and class assignmnets of existing ones.

perClass Mira Documentation

Data Clssification Regre

o - .- I i e o
Images No abek be 2 E cts Mo Retrain Show unknown Zoomin Zoomout |

Classes X - & s Feature extraction
Unknown

Exporting label images

Exporting label images provides label masks as PNG files including class names meta-data. This is useful
when using perClass Mira as a precise annotation tool for external machine learning training work-flow.

Y

Export per-image results to Excel

Export object results to Excel

Export visualzation ...

Export bbeled data to Matkb

Export label mages

Export ENVI cubes

Export ENVI cube (convert to BIL uintl6)
Export cube to Mathb

Export visualzation (float image)
Export regions

Export region feature wcel

Export region features to XML

yort binned ENVI cube (BIP float)

Export preprocessed cube

A destination directory can be selected of created. Optional scan name suffix can also be specified. This is
useful to distinguish different groups of scans, for example, due to their training/test status or product
variant. We may view the exported images conveniently in the Windows Explorer

124 /191

perClass Mira Documentation

Manage label images
GO rome Share | View Ficture Taols [7]
B
I I Preview pane | | Extra large icongl L large icons 22 Medium icons] Group by = [] ttem check boues :
2 small icons == Details 1] Add columns [File name extensions
Havigation - = = sent Hide selected Options
Wa{. TH Details pane == Tiles 2= Con S by~ size all columns to it [Hidden items tems Pt..
Panes Layout Current view Show/hide
= A « 05(C) » Spectralimages » export_examples > label images v U Search label_images
-~
— “
) —
/,..— o] ¢
e
- -
- —
natural gbiectsl.ong natural obiectsZ.ong b
2 items 2=

Class name meta-data
The exported images contain class name meta-data.

Accessing meta-data using TweakPNG
Free TweakPNG utility can be used to view PNG file meta-data: http://entropymine.com/jason/tweakpng/

'J‘ natural_objects].png (C:\Spectrallmages\export_exampleshlabel_images\] - TweakPNG

Eile Edit [nsemt QOptions Jools Help

Chunk Length CRC Antributes Contents

IHOR 13 Tedelefs critical PNG image header; §40= 503, 8 bits/picel, paletted, neninterlaced
PLTE ThE 6396290 critical palette, 256 entries

NS 6 ¢b3273ba ancillary, unsafe to copy alpha values for palette colors, 6 entries

pHYs 9 deBBIfTE ancillary, safe to copy pixel size = 4T24x4724 pixels per meter (120.0:120.0 dpi)

tExt 12 4azalbda? ancillary, safe to copy text, key="ClassCount™ (nonstandard): 6"

tExt 27 1438399 ancillary, safe to copy text, key="ClassFormat” (nonstandard): "perClass Mira 17

62 3beleled ancillary, safe to copy text [compressed), key="ClassNames® [nenstandard): “Unknown, background,leaves, nuts shells wood”
TOAT 2331 B leadc critical PRG image data
IEMD 0 asd26082 critical end-of-image marker
PG file size: 3244 bytes

Accessing meta-data in Matlab

Using imginfo command in Matlab, we can access the meta-data information, stored by perClass Mira. We

need to extract the "OtherText" property:

>> s=imfinfo('natural_objects1.png’);
>> 5.0OtherText

ans =
3x 2 cell array
‘ClassCount’ '6'
'‘ClassFormat’ 'perClass Mira 1'

‘ClassNames'

Model testing

‘Unknown,background,leaves,nuts,shells,wood'

Machine learning models are trained on annotated data. In perClass Mira, the concept of testing is strictly
refering to evaluation of model performance on unseen examples. We would like to stress, that data used
for testing should never be comprising the same of very similar physical objects as the ones used for model

125/191

perClass Mira Documentation

training.

In perClass Mira, images can be flagged for testing. This means, that any subsequent model retrainning will
not use these images for any of the steps.

NOTE that flagging an image only does not change already existing models. The user needs to
explicitly retrain a model or perform new model search in order for the new image falgs to take
effect.

Flagging images for testing

Images can be flagged for testing using context menu in Images list and the Flag images as test command:

.ﬂ._-m

o BT =
nowder B 40 10 2 Set project data

Export Bbel image

Import bbel image

Remove point annotations
Export visualzation ...

Set image as region templte

Show in Explorer

powder_A_80_1

TIP: Ctrl+T keyboard shortcut performs the same action.

Note, that the state of the selected images changes by applying this command. Therefore, images that were
already part of the test set will become part of the training set (will loose the green color emphasis).

126/191

Additional image flagging commands

Data menu contains several additional commands for image flagging in Image flags sub-menu:

Exclude chss from traning

|___magefags || Flgimagesastes

Crop mode 5 @5 training
Flag mages as test

Flag % of images as testing Ctr+Shift+T 2

Reglons Set image as region template
Edit image name

fer_a_30_7_ = 3

fer_B_30_8_2023-01-21_12-25-0/

ler A 40 9 2023-01-21 12-25-16

e Percentage of of selected images can be randomly assigned a test flag. This is useful to perform
manual cross-validation on a large number of scans. We select all scans (Ctrl+A) and flag random
fraction as test. We rebuild a model and record test set performance. Note, that in order to retrain a
model, we need to have labeled data. Therefore, most of your scans should be meaningfuly annotated
in order to use this manual cross-validation approach.

Selected images may be all flag for training or for testing

Cross-validation

perClass Mira provides a convenient Cross-validation tool significantly simplifying statistical validation of
models.

What is cross-validation?

Cross-validation is a procedure of repeated retraining of a model and re-testing on different fractions of the
data. The goal is to assess variability of model performance on a given problem. Repeated testing
provides us with performance estimates accompanied with their respective standard deviations. Cross-
validation allows us to compare two machine learning models at certain significance level. In other words, it
allows us to conclude whether one model performs significantly better than other.

Cross-validation in perClass Mira

The cross-validation tool in perClass Mira can support classification, regression, or custom external
analysis work-flows. We will explain Cross-validation tool based on a regression example. We are
estimating mixing proportion of two powders using regression modeling. We have placed the Cross-

validation panel o in the center under the image view. On the right side, we have a Regression panel

e with results of a model, trained on a set of scans 9 . Note, that three images were_manually flagged
as testing. Therefore, we observe three green points in the Regression plot.

perClass Mira Documentation

o perClyss Mira

Apply model to data

Regression plot

Cross validation X

meges % | (3 £ x 1
witer_A_0_1_20B01-21_12-22-51 e

For this example, it is useful to clarify the scanning task and the structure of file names. We have a set of
plastic vials with mixed powder. Each vial containing one specific mixing proportion. We scan each vial

alone multiple times. Each time, we record which mixing proportion the vial contains by an integer o

below. The letter 9 denotes which replica scan of the same vial we have acquired. Replicas A, B, and C
mean three repeated scans of the same powder container,

In order to use the cross-validation, we need to make a selection of images. In most cases, we wish to
cross-validate on all images in the project. Therefore may select all using the Ctrl+A keyboard shortcut.

g and its controls e will become enabled.

When an image selection is created, the Cross-validation panel will fill the selected images in a table

128/191

perClass Mira Documentation

Images X Crass vabdation X

wder_A_)_1_2023-01-21_12-22-51
powder_B_0_2_2023-01-21_12-23-08 1

aweder_A_10_3_2023-01-21_12-23-3
owder_B_10_4_2023-01-21_12-23-50

owder_B_20_6_2023-01-21_12-24-30
awder_A_30_7_2023-01-21_12-24-49
aweder_B_30_8_2023-01-21_12-25-02
oweder_A_40_9_2023-01-21_12-23-16 _
Sarmple namsa
powder_A_S50_11_2023-01-21_12-25-42

welar B 5012 2023-01-21_12.26.18

wdlar A_60_ 14 2023-01-21_ 12-26-47
gwder_B_60_13 2023-01-21_12-27-01
aweder_A_T0_16_2023-01-21_12-27-15
owder_B_70_17_2023-01-21_12-27-27 R 3%.01-31 13-33-08
aveder_a_B0_18_2023-01-21_12-27-43 == =
owder_B_BO_19 2023-01-21_12-27-54
owder_A_90_20_2023-01-21_12-28-16
owder_B_90_21_2023-01-21_12-28-28 Start session ACton None
powder A_I00 22 2023-01-21_12-28-43
owder_B_100_23_2023-01-21_12-28-55 o

A Al B AT AT BT 1T WD BE e o

We will first explain default cross-validation over images.
Cross-validation over images

This section explains cross-validation over images (as selected in the Samples tab of the Cross-validation
panel).

In the Selection tab, we have three choices for common cross-validation strategies:

¢ Leave-one out - in this setup a single item defined in Samples (an image in this section) is left for
testing and all others used for trainig.

¢ Rotation - Here a random splitting of images is performed first, followed by definition of smaller image
groups called folds. In each fold, one group is used for testing and all remaining for training. Note, that
images in each fold are tested only once in the rotation scheme

¢ Randomization - In this setup a random subset of a user-defined percentage is used for testing and all
remaining samples for training. This process is repeated fold-times. The major difference from Rotation
is that items in the test (images) may be used for testing multiple times.

Cross validation =

der A0 J_2023-01-21_12-22-51
powder_B_0_2_2023-01-21_12-23-08
powder_A_10_3 2023-01-21_12-23-35
powder_B_10_4_2023-01-21_12-23-50

Samples | Selection

powder_B_20_6_2023-01-21_12-24-30
powder_A_30_7_2023-01-21_12-24-49
powder_B_30_8 2023-01-21_12-25-02
powder_A_40_9_2023-01-21_12-25-16
) Randomaation 4 test samples folds
powder_A_50_11_2023-01-21_12-25-42
ver 8 5 12 2023-01-21_12-26-16

wder A_60_14_2023-01-21_12-26-47 ATRgeE
powder_B_60_15_2023-01-21_12-27-01 powder A 0_1 2023-01-21 12-22.51
powder_&_70_16_2023-01-21_12-27-15 - -
powder_B_70_17_2023-01-21_12-27-27
povider_A_B0_18_2023-01-21_12-27-43
poweder_B_B0_19_2023-01-21_13-27-54
powder_A_90_20_2023-01-21_12-28-16
powder_B_90_21_2023-01-21_12-28-28 Start sassion Action None
owder A_ 100 22 2023-01-21_12-25-43 0
powder_B_100_23 2023-01-21_12-28-55

powder_B_0_2_2023-01-21_12-23-08

129/191

perClass Mira Documentation

To start the cross-validation session, we click on Start session button

The first fold of a leave-one-image-out scheme will look like as follows:

Cross vabdation X

powder_B_0_2_2023-01-21_12-23-08 Samples [N

poweder_A_10_3_2023-01-21_12-23-35
powder_B_10_4_2023-01-21_12-23-50
powder_A_20_% 2023-01-21_12-24-14
powder_B_20_6_2023-01-21_12-24-30
powder_A_30_7_2023-01-21_12-24-49
powder_B_30_8_2023-01-21_12-25-02
powder_A_40_9_2023-01-21_12-25-16
poveder_B_40_10_2023-01-21_12-25-28 4 test samples
poweder_A_S0_11_2023-01-21_12-2542
powder B 50 12 2023-01-21_12-26-16
powder 50 13 2023-01-21 122632
powdRr_A_S0_14_2023-01-21_12.2547
poweder_B_60_15_2023-01-21_12-27-01

powder_A_70_16_2023-01-21_12-27-15
poweder_B_T0_17_2023-01-21_12-27-27

powder_A_B0_18 2023-01-21_12-27-43
poweder_B_80_19_2023-01-21_12-27-54

powder_A_90_20_2023-01-21_12-28-16
powder_B_90_21_2023-01-21_12-28-28 2550 Action Mone
powder A_J00 22 2023-01-21_12-28-43
powder_B_100_23_2023-01-21_12-28-55

Images Samples

powder_A_0_1_2023-01-21_12-32-51 |powder_A_0_1_2023-01-21_12-23-51

powder_B_0_3_2023-01-21_12-23-08 powder_B_0_2_2023-01-21_12-23-08

T AT 1T D JC

We may now perform what ever model building action we like with standard perClass Mira tools. For
example, run a model search in the Regression tool. We will observe a single test object:

. perClass Mirs

Preprocessing none

Model search Retran model Apply model to data Apply model to this image

Regression plot

Cross valdation %

elaction

_B_20_¢ 24-30
powder_A_30_7_2023-01-21_12-24-49
powder_B_30_8_2023-01-21_12-25-02
POWdEr_A_50_9_2023-01-21_12-2516
powder_B_40_10_2023-01-21_12-25-28
powder_A_S0_11_2023-01-21_12-2542
powder 8 X012 2023-01-21_12-26-16
powder_C_50_I3_2023-01-21_12-26-32
powder_A_60_14_2023-01-21_12-2647
powder_B_60_15_2023-01-21_12-27-01
powder_A_70_16_2023-01-21_12-27-15

Images Samples

powder_A_0_1_2023-01 51 |powder_A_0_1_2023-01-21_12-22.51

powder_B_70_17_2023-01-21_12-27-27
pawder_A_BI_18_2023-01-21_12-2743
powder_B_B0_19_2023-01-21_12-27-54¢
powder_A_90_20_2023-01-21_12-28-16
powder_B_S0_21_2023-01-21_12-28-28
powder A_100_22 2023-01-21_12-2643
powder_B_100_23_2023-01-21_12-2855

To move to another leave-one-out fold, we may use either the fold spinbox or the slider . We are

free to jump to any fold we like. For example, jumping to the 3rd fold and re-running model search, we will

observe the following:

130/191

perClass Mira Documentation

= perClass Mira

none

Model search Retrain model Apply model to data Apply model to ths mage

Regression piot Ermors

Cross vabdation X

powder_A_0_1_2023-01-21_12-22-51
owder_B_0_2 2023-01-21_12-23-08 | Salection

10_4_2023-01-21_12-23-50
0_5_2023-01-21_12-24-14
_B_20_6_2023-01-21_12-24-30

_A_30_7_2023-01-21_12-24-49

_B_30_8_2023-01-21_12:2502
_A_40_0_2023-01-21_12-25-16
powder_B_40_10_2023-01-21_12-25-28 4 test samples
powder_A_S0_11_2023-01-21_12-2542
powder 8_S0_12 2023-01-21_12-26-16
powder ¢_S0_13. 2023-01-21_12-26-32
powder_A_60_14_2023-01-21_12-26-47
r_B_60_15_2023-01-21_12-27-01
70_16_2023-01-21_12-27-15
0_17_2023-01-21_12:27:27 " ey et AL 2206 Training set (|
B0_18_2023-01-21_12-2743 i
80_19_2023-01-21_12-27-54 i | Test set (Q
_A_90_20_202301-21_12-26-16 - ’ ’ S ’
po r_B_90_21_2023-01-21_12-28-28
powder_A_100_22_2023-01-21_12-26-43
owder_B_100_23_2023-01-21_12-28-55

This is to explain the concept of cross-validation. Of course, leaving out a single single image is not too
complex in a normal work-flow and thus not very exciting. However, the Rotation and Randomization
schemes performed using the cross-validation over images become a great help. Whe the Cross-validation
tool really shines is_the cross-valiadtion considering replicas.

TIP: After each manual retraining, you may copy the test set performance out from the Statistics tab

Closing cross-validation session

The cross-validation session needs to be ended by pressing End session button o above. Alternatively,
cancelling image selection also disables the session. When selecting multiple images again, we must
explicitly start the cross-validation session.

Cross-validation over replicas

What is a replica?

Replica is a repeated measurement of the same physical sample. In order to estimate true
generalization performance of our models, we should keep replicas of a specific physical object either in
training or in test set, but never split between both. The reason is, that having very similar examples in both
training set and the test set makes perfrormance of our models positively biased (over-optimistic). Our
models have seen very similar data in training and thus correct results on such data in the test set do not
necessarily translate into good generalization capabilities. By generalization we mean robust performance
on entirely unseen examples.

Cross-validation over replicas in perClass Mira

If the replica status is preserved in the scan filenames, we can easily instruct the Cross-validation tool to
perform data splitting over replicas not over images. For example, in our poweder data set, the A/B/C...
letter indicates a replica of the same physical vial (container).

We keep the leave-one-out method selected in the Selection tab, return to Samples tab and change the

selection from Image to Samples o . This means, that we may define what consititues are sample for
cross-validation. The default is invalid which leads to all selected images flagged as red. We Can now
define a regular expression in 9 e
for the cross-valiation.

that parses image names and the sample definition in that ise used

131/191

perClass Mira Documentation

= perClass Mira
Help

X
s M

No bbels BT Deceions

Apply model to data Apply model to this mage

Regression plot

o x | Crossvaldat

Sample name

$0

Example solution in our case is to detect the mixing proportion from the file name and construct a new file
name that only lists the mixing proportion, nothing else. The reason is that we want to make sure that one
vial (i.e. one mixing proportion) ends up either in training or in testing set but not split in both.

Technically, we put in 9 the regular expression that matches each file name allowing for the replica
definition using a single capital letter from A-Z range. After the underscore, we capture one or more diits
until the unther underscore. The capture (part of a string that will be extracted and avilable to us for
reference) is enclosed in round brackets. The \d referes to a digit, the + sign after means that the digit
repeats one or more times. This is a standard regular expression syntaxt that is very handy when dealing
with structured patterns in strings.

TIP: For a reference information on regular expressions, see
https://en.wikipedia.org/wiki/Reqular_expression

132/191

https://en.wikipedia.org/wiki/Regular_expression

powder A_0_I_2023-01-21_12-22-51
powder_B_0_2_2023-01-21_12-23-08

powder_B_10_4_2023-01-21_12-22-50
powder_A_20_5_2023-01-21_12-24-14
powder_B_20_6_2023-01-21_12-24-30
powder_A_30_7_2023-01-21_12-2449
powder_B_30_8_2023-01-21_12-25-02
powder_A_40_5_2023-01-21_12-25-16
powder_B_40_10_2023-01-21_12-25-28
powder_A_S0_11_2023-01-21_12-2542
powder B 50 12 2023-01-21_12-26-16
powder € 5013 2023-01-21 12.26-32
powder A_G0_14_2023-01-21_12:-26-47
powder_B_60_15_2023-01-21_12-27-01
powder_A_70_16_2023-01-21_12-27-15
powder_B_70_17_2023-01-21_12-27-27
powder_A_B0_18_2023-01-21_12-27-43
powder_B_80_19_2023-01-21_12-27-54
powder_A_50_20_2023-01-21_12-28-16
powder_B_90_21_2023-01-21_12-28-28
powder A_100_22 2023-01-21_12-28-43
powder_B_100_23_2023-01-21_12-28-55
powder € 100_24_2023-01-21_12-2905

We also fill the output pattern in the Sample name field

perClass Mira Documentation

Cross vabdation

Samples

D Images

® samples

Image name expression
powder_[A-Z]_(\d+)_
Sample name

powder-51

Images

01-21_12-24-14

powder-20
yder_B_20_6_2023-01-21_12-24-30
powder_A_30_7_2023-01-21_12-24-49

powder-30

powder_B_30_8_2023-01-21_12-25-02 powder-30

Start 5 Action HNone

above. The important point is that we may

refer here to any captures using $1, $2 etc. syntax denoting the 1st, 2nd or later captue (text matched
within the round parentheses of the regular expression).

The table shows how original image filename translate into our new definition.

By clicking Start session we can initiate new cross-validation session where we will perform leave-one-vial-
out. We also pressed Model search in Regression panel in order to directly see test examples in the
Regression plot. Note, that the first fold now covers all replicas of the vial with mixing proportion 0. In

our case these are two images.

Help

@ E B 08

Cube | No bbels ns E

% | Cross valdation %

owder_A_10_3_2023-01-21_13-23-35
r_B_10_4_2023-01-21_12-23-50
20_5_2023-01-21_12-24-14

r_B_20_6_2023-01-21_12-24-30
30_7_2023-01-21_12-24-49
0_8_2023-01-21_12-25-02

40_9_2023-01-21_12-25-16
r_B_40_10_2023-01-21_12-25-28
A_S50_11_2022-01-21_12-25-42
50_12 2023-01-21_12-26-16
5013 2023-01-21_12-26-32
60_14_2023-01-21_12-26-47
60_15_2023-01-21_12-27-01
F0_16_2023-01-21_12-27-15
F0_17_2023-01-21_12-27-27

Apply o Apply mo

Regression plot

133/191

perClass Mira Documentation

By selecting a different fold using the spinbox
replicas of another vial from training:

and re-running the Model search, we will exclude all

Apply mo

Regression plot

% | Cross valdation %
0 1 2023-01-21_12.22-51
B_0_2 2023-01-21_12-23-08

powder A_60 14 2023-01-20_12-26-47
0 15,

powder_A_S0_11_2023-01-21_12-2542

powder_B_50_12_2023-01-21_12-26-16
_B_80_19_2023-01-21_12-27-54
powder_A_S0_20_2023-01-21_12-28-16 powder_C_S50_13_2023-01-21_12-26-32
powder_B_50_21_2023-01-21_12-28-28
powder_A_100_22 2023-01-21_12-26-43

powder_B_100_23_2023-01-21_12-28-55
powdar C_100_29_2023-01-21_12-29-05

Note, that in the fold 6, we have three replicas of the vial with mixing proportion 60. All three are now in a
test set.

For each fold model, we may copy the regression performance from Statistics tab to clipboard, paste into
Excel sheet. In this way, we gradually build a table of per-fold results where we will be able to assess
statistical variability of each measure.

In this section, we have seen, how to fairly assess performance of our regression model on unseen vials in
powder project.

Default action

perClass Mira Cross-validation tool allows us to define default action executed when moving to a new fold.
By default, nothing happens and user can perform any desired analysis manually. That is what we did in
the earlier examples in this section.

The Action combo box in the Cross-validation panel allows us to change this default behaviour. We may
retrain classifier or regressor or rerun their model search.

P

16
]

powder_C_50_13_2023-01-21_12-26-32 |powder-50
M3 powder_A_60_14_2023-01-21_12-26-47
-55 - T -

La5

End session Action | Mone

S ler - Model search
ier - Retrain

Regrassion - Model search

Now, after a new fold is selected, the regression model search is automatically re-run. This simplifies

134/191

further the common work-flow:

¢ Setup cross-validation scheme and definition of samples, if needed
¢ Set the default action

¢ Start cross-validation session
0O gotoafold
O model is rebuilt automatically
O copy results of interest

¢ Repeat until all folds are performed

Reference

This chapter provides reference information such as
e Software release notes

o Application server

o perClass Stage

o perClass Camera API

¢ perClass Mira Runtime API

Integration

This section describes how to integrate solutions, built with perClass Mira, into custom applications running
camera acquisition and data processing.

The scheme below describes the modules involved. While perClass software components are rendered in
blue, the spectral sensor in red and customer-specific parts in yellow.

The left side depicts the Design stage where perClass Mira Dev user-interface (1) to connect to a spectral
camera (2). From the user interface, we can record scans (A) used for training and testing the models.
Once the solution is built and properly validated, it may be exported into "Mira PipeLine" MPL file (B).

Then, we may proceed to the Deployment stage on the right side. There, we wish to run an industrial
sorting machine (8) with the camera (2) in a tight control loop. This loop is executed on a PC in a custom
solution (3). This is an application that reads data from the sensor (2) using perClass Mira Camera API (4)
and processes this data with perClass Mira Runtime API (6).

The runtime (6) loads the exported MPL solution (B). This solution typicallt contains a classifier able to
identify objects. Objects are detected by the Runtime (6) and their details such as size, centroind position
and class are passed to a custom code (7). This module translates the coordinates from pixels (across the
belt) and frames (along the belt) to machine-specific coordinates and drives the actuators.

Commented example of acquisition from Camera API is available here.

perClass Mira Documentation

E[% perClass deployment setup on a PC

Design stage Deployment stage

3 Custom solution
data data

stream stream

=
2 Spectral 4 perClass Mira /
1 perClass Mira Dev camera acquisition library

6 perClass Mira
Acquired Runtime

frames

Detected
object

Neo—

|))| 7 Custom

B Exported solution Code to drive

X . Custom L - actuator
J (-mpl file) L m commands |

o C White/dark to actuaior

A Training and references 8 Sorting
test scans machine

Example of acquisition from Camera API

information

4-mar-2022

This example shows how to acquire data from a sensor using perClass Mira Camera API. The sensor used
is Headwall MV.C VNIR. The example is generic and should work unchanged with other line-scan cameras

when linked to the respective perClass acquisition plugin.

The example shows how to:

¢ inquire on the version of acquisition library (line 13)

¢ initialize the acquisition plugin (line 20)

¢ scan for available devices and return their names (line 25-31)
¢ open a device (line 33)

¢ testif a device is a line-scan or snapshot (line 36)

¢ setup wavelength resampling to specific output wavelengths irrespective of a device (line 43-49)

¢ initialize acquisition (line 51)

¢ query frame geometry, data type and layout (60-72)

¢ set exposure and frame rate (lines 74-76)

¢ acquire 100 frames, store data in memory (line 94-100)

In order to compile the example with command line Microsoft Visual C/C++ compiler use:

> cl ex05.c -1 "C:\Program Files\perClass Mira\lib" "C:\Program Files\perClass
Mira\lib\miraacq_ximea_1.7.1.lib"

Note, that we point to the lib sub-dir of perClass Mira installation for includes and directly link with the

acuisition plugin for your camera (Ximea plugin for MV.C VNIR).

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <stdint. h>
#i ncl ude "m raacq. h"

int main(int argc, const char* argv[])
{

int res=M RA_X;

uint16_t* pBuf =NULL;

CoNog~WNE

136/191

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31
32.
33.

35.
36.
37.
38.
39.
40.
41.
42.
43.

45.
46.
47.
48.
49,
50.
51
52.
53.

55.
56.
57.
58.
59.
60.
61.
62.
63.

FI LE* fid=NULL;

int api,rev, step;
const char* str=nmraacq_Get APl Ver si on(&api , & ev, &st ep) ;
printf("Exanple of acquiring data using perCass Mra Acquisition Pl u

const char* str2=m raacq_GCet Version();
printf("Version: "%"'\n",str2);

mekernel * pma=mraacq_lnit(".");
printf("Init: %", miraacq_GCetErrorMg(pm));
i f(pma==NULL) {

goto Error,;

}

M RAACQ CHECK(mi raacq_ScanDevi ces(pna));

const int devCount=niraacq_Cet Devi ceCount (pmma) ;
printf("\n%l devices:\n", devCount);
for(int i=0;i<devCount;i++) {
printf("%l : 9%\n",i, mraacq_GCetDeviceNane(pma,i));
}
i nt devi cel nd=0;
M RAACQ CHECK(mi raacq_OpenDevi ce(png, devi celnd));
printf("Device opened: %l ' %' \n", devi cel nd, mi raacq_GCet Devi ceNane(pma.

i nt i sSnapshot =ni raacq_Devi cel sSnapshot (pna) ;

if(isSnapshot) {
printf("Line-scan device required by this exanple\n");
M RAACQ CHECK(niraacq_C oseDevi ce(pma, devi cel nd));
goto Error;

}

printf("Setting resanpling from400 to 1000, step 2\n");
i nt bands=(1000-400)/ 2;
M RAACQ CHECK(mi raacq_Set Resanpl i ngWavel engt hCount (pre, bands));
for(int i=0;i<bands;i++) {

M RAACQ CHECK(niraacq_Set Resanpl i ngWavel engt h(pma, i, 400+(2*i)));
}
M RAACQ CHECK(miraacq_Set Resanpling(pma,1));

printf("Initializing the acquisition...");
res=mraacqg_lnitializeAcquisition(pmm);
printf("done res=%l\n",res);
fflush(0);
if(resrT=MRA K) {
M RAACQ CHECK(niraacq_C oseDevi ce(pma, devi cel nd));
goto Error;

}

printf("Geonetry: w dth=% bands=%l |i nes=%l dataType=% dat aLayout =%
m raacq_Get FrameW dt h(pna) ,
m raacq_Get Fr anreBands(pna) ,
m raacq_Get Fr ameHei ght (pm) ,

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.

85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.

m raacq_GCet FraneDat aType(pna) ,
m raacq_Get FraneDat aLayout (pna) ,
m raacq_Get FraneSi ze(pm));

i f(mraacq_Cet FraneDat aType(pma) ! =ACQ DATATYPE _UI NT16) {
printf("U NT16 data type expected by this exanple\n");
M RAACQ CHECK(mi raacq_Cl oseDevi ce(png, devi cel nd)) ;
goto Error;

}

M RAACQ CHECK(mi raacq_Set Exposure(pna, 4.0));
M RAACQ CHECK(mi raacq_Set FranmeRat e(prma, 100.0));

const int frames=100;

int frameSi ze=m raacq_Cet FraneSi ze(pna) ;

pBuf =mal | oc(franmes*franeSi ze);

i f(pBuf==NULL) {
M RAACQ CHECK(m raacq_Cl oseDevi ce(png, devi cel nd)) ;
goto Error;

}
M RAACQ CHECK(miraacq_StartAcquisition(pna));

uint16_t* ptr=pBuf;
size_t franel D=0;

/1l offset to the next franme in uintl6 units (a frane has w dth x band:
i nt next FrameOf f set = nmiraacq_Get FraneW dt h(pma) * i r aacq_Get Fr anmeBands|

printf("Acquiring % franmes:\n",franes);
for(int i=0;i<franes;i++) {

M RAACQ CHECK(mniraacq_Cet Franme(pma, ptr, & ramel D, 1000));

pt r +=next Framef f set ;

}

printf("Stopping acquisition\n");
M RAACQ CHECK(miraacq_StopAcquisition(pm));

printf("Witing data to file:\n");

FI LE* pFil e=fopen("out.bin","wh");

if(pFile==NULL) {
printf("Cannot open file for witing\n");
M RAACQ CHECK(m raacq_C oseDevi ce(png, devi cel nd)) ;
goto Error;

}

size_t countWitten=fwite(pBuf, (size_ t)franmeSize,franes, pFile);
printf("%u bytes witten to file\n",countWitten*franeSi ze);

fclose(pFile);

118.Error:

119. if(restl=MRA OK) {

120. printf("Error %: %", mraacq_Get Error Code(pna), m raacq_GCet Error N\
121. }

122.

123. m raacq_Rel ease(pna) ;

124.

125. i f(pBuf!=NULL) free(pBuf);
126.

127. return O;

128.}

129.

Release notes

4.2.9 4-oct-2023

o Acquisition improvements
0 Headwall MV.C VNIR camera supporting frame buffering. If computer cannot keep up with live
acquisition, the buffered frames will be now saved at the end of scanning session. Frame
buffering can be disabled by ini option

0 Headwall MV.C NIR camera new shutter mode supported
O New VimbaX plugin to support Resonon NIR systems (replacing the deprecated Resonon SDK)
0 Type of data stream included in recorded header files ("Raw calibrated" or "Resampled")
¢ perClass Mira Stage
0 Speeding up stage response
0 Fixing the intermittent problem where scans could be extended in length
O Adding stage cycle number
¢ perClass Mira improvements
0 Regression import dialog interprets Excel address references case-insensitive

4.2.8 23-aug-2023

¢ perClass Mira Stage
0 Added support for perClass Mira Stage v2.0
0 Added TCP/IP commands to control the stage via Application Server interface
¢ Region improvements
O Added command to add regions from a template
= Works also in a batch mode for all selected image
0 Removing regions from multiple images does not remove template regions, user is asked to
explicitly confirm
¢ Regression improvememnts
O Added RER performance statistics in regression
0 Fixing the display of output with multiple objects
¢ Acquisition plugins
0 fixin filereader plugin - preloading multiple cubes properly handles memory size limits
0 Headwall Hyperspeclll plugin adds support for wavelength information from the sensor
0 Headwall MV.X allows using arbitrary IP address for the websocket communication (identical to
the eBUS data connection)
O Pleora eBUS plugin adding eBUS 6.3 version which enables enables full support Windows 11
(eBUS 5.1 and 6.1 are also supported)
0 Resonon acquisition adds a setting for a number of aquired reference frames
0 Unispectral acquisition reports situations where the camera does not return a frame
¢ Benchmarking improvements
0 Added automatic optimization of the best band subset (ROI) and classification model for a

given project
0 Benchmark visualization of the benchmarked ROIs for speed, for error and for both criteria
O Best feature set found can be set to the project spectral plot

4.2.7 26-jun-2023

¢ Fixed issue with dropped frames on Headwall MV.C VNIR
¢ Benchmark frame count limit increased to 100k frames

4.2.6 14-jun-2023

¢ New command to copy class mean (min/max) spectra to clipboard as text in Spectral plot
0 Copy wavelengths and band selection to clipboard information as text

¢ The export into Matlab command is batched applying the action to selected images

¢ The Add regions from objects command is batched applying the action to selected images

¢ New Set source command in Camera menu allows to switch the project to a different acquisition target
(from the favorities)

¢ New dropped frame counter in the Camera panel
¢ Panels in the Windows menu are now in alphabetic order
¢ Fixed crash when changing acquisition source

¢ Cubert acquisition improvements
0 Distance can be changed via mira.ini file
O Fixed auto-exposure

4.2.4 20-apr-2023

¢ added support for Avaldata camera uing TransFlyer SDK

¢ added export of regions as cubes

¢ Help menu now opens on-line documentation in a browser

¢ Application server: added object detection channel for filereader plugin

o fix for crash in visualization when using image rotation

¢ fixin sync panel to download only selected directories

¢ fix in buffer queueing in Pleora eBUS acquisition

¢ Headwall MV.X license and runtime installation and switching from sync panel

¢ Headwall MV.C cameras
O adding reference frame count in header files, default 100
0 fixed ROI offset and wavelength flip

4.2 13-mar-2023

¢ new Camera and Images modes allow easy transition between live acquisition and working with saved
scans

¢ support for perClass Stage
O includes user-defined commands for stage hardware buttons
O support for a quick setup of a camera
= auto-exposure leveraging available dynamic range for current illumination
= finding optimal focus using easy user feedback
= adjustment of scanning speed or frame rate to reach square pixels for line-scan
cameras
¢ new Cross-validation tool
0 Easily perform leave-one-out, rotation and randomization cross-validation for classification or
regression
0 Supports cross-validation over images or over replicas (multiple scans of one physical sample
that need to be all either in training or in the test set)

* new tool to add manual object separation to existing object segmentation

0 This allows one to pack more objects in one scan even if touching. Manual object separation
does not extend to deployment.
0 Object separation enables also fine control on areas used for regression analysis
new sensor support
O full support for Headwall MV.C VNIR and NIR cameras
O partial support for legacy Headwall Hyperspeclll cameras (currently VNIR and NIR supported,
not SWIR)
O support for snapshot filereader
0 experimental support for Agrowing sensors
new perClass Camera API
0 provides a unified interface for embedding data acquisition into custom applications

4.1 22-sep-2022

new docking system allowing better panel positioning
O user may name and save "perspective” of all open panels over multiple screens
data acquisition
0 new frame widget showing live raw frames with spatial and spectral profiles
® saturation detection for selected cameras
= frame widget is automatically active also on loaded scans (off-line)
0 new "belt' visualization of the live data stream
= visualizaing live object classification results also for line-scans
= possible to switch between waterfall and belt views
new filereader plugin for line scans
allows setting of frame rate to measure algorithm speed
user-defined visualization color maps
O multiple color points and colormap reversal
0 colormaps can be stored in mira.ini file for re-use beyween projects and copy/pasted as text
improved alpha layer handling
0 two sliders provided, one for all classes and one for the currently selected class
0 alpha layer can be adjusted during the live acquisition to highlight only the decisions of interest
new_application server functionality
0 perClass Mira acquisition can be controlled via text commands sent over TCP/IP connection
0 this allows quick construction of live demonstrators including custom actuator without low-level
programming
O separate object detection channel allowing one to react on detections
new sensor support
O HAIP Blackindustry
O Headwall MV.X using Pleora eBUS
0 Silios CMS using Silios SDK

O Excel export of full spectral uses .xlsx file format by default allowing up to 16k columns

0 regression auto-scale via context menu

O add regions from current objects works correctly in cases when segmentation was not applied
to the image

0 adjustments of the confusion matrix to avoid unreadable text due to close
foreground/background colors

0 fixed auto-detection of ENVI cubes without extension

4.0 6-apr-2022

adding comprehensive data acquisition and recording functionality
O Supported camera types
= Cubert - Ultris series
= |mec - all Mosaic systems (including PhotonFocus and Ximea cameras)

= |nno-spec - RedEye 1.7 NIR and Speccer moving stage
= Resonon - both VNIR systens and NIR Pika systems
= Specim - FX series (via SpecSensor SDK)
= Unispectral - Monarch
0 redisigned new project dialog - the user can select to either to
= Joad existing scans recorded in camera vendor-specific software
= orto do live data acquisition from supported camera
0 live acquisitions support raw (uncorrected) data from spectral camers and user-defined
reflectance correction work-flows
= point correction (based on user-localized white reference in the scene)
= non-uniformity correction to account for inhomgeneous illumination
= user-defined white level to support gray references
= setting references from existing scans
O data in the live acquisition is saved in the new perClass Mira data format (ENVI-based, .pcf
extension)
= |n this way perClass Mira supports multiple correction work-flows for any supported
camera type
® scan-specific and directory-specific correction references
O live data processing includes object segmentation and classification for snapshots
new Cubert project type supporting .cu3 files for all cameras
specific features for Unispectral
O Supporting band selection in the camera to speed up acquisition
O Fix supporting ‘default bands' field with only a single entry
for VNIR systems, R,G and B lines in the preview mode are se to meaningful defaults. User can change
preferred defaults in mira.ini
Export of spectral cube to Matlab now includes also the wavelength vector
Regression improvements
0 Significantly faster operation, avoiding processing of images on project load

3.1.2 2-dec-2021

copy current image view to clipboard as image using Ctrl+C
adding display autoStretch option with a slider control in the spectral plot context menu
regression improvements

0 adding dark/light background option to regression plots

0 adding copy to clipboard to regression plots

0 adding copy as text (direct copy to Excel) for regression performance values
object confusion matrix considers only true regions from classes flagged as foreground
enabling regression output in acquisition mode

fix of regression issue that could lead to non-reproducible model when bands in the end of the range
were selected

enhancing support for spectral cubes larger than 4GB

fixing crop on Silios images

fixing the issue where object segmentation sometimes flipped to object IDs even if object labels were set
fixing the issue with auto scaling of regression plot in situations with a lot of outliers

3.1.1 25-0ct-2021

fixing the bug in display auto stretch where the stretch was on by not enabled
fixing the problem when training classifiers on large cubes (>4GB)
fixing the crash in object confusion matrix

3.1 3-sep-2021

® new project types

o

(0]

Inno-spec project including reflectance correction on scan load (correction can be specified
per-image and per-directory)
Resonon project type supporting reflectance correction on scan load

¢ new installers

(0]
(0]
(0]

adding support for CUDA11.2
separate full installer including NVIDIA CUDA support
separate smaller installer for CPU + OpenCL backends convenient also for virtual machiens

¢ significant speedup of classification at runtime

(0]

holds for both CPU and GPU backends including also older projects

* new acquisition functionality

(0]

(0]
(0]
(0]

acquisition plugins allow use of different vendor SDKs

adding support for Resonon Pika cameras

SpecSensor plugins for 2019 and 2020 SDKs

Pleora eBUS support for eBUS 5.1 and 6.1 adds support for GenlCam-compliant sensors such
as Inno-Spec RedEye2

¢ improvements in regression

0]
(0]

outlier score plot and error plots help to clean training/test set of outliers
performance measures panel with user-defined acceptance criteria

¢ GUI improvements

o

(ol oleolNe)

object-level confusion matrix with interactive visualization of ground-truth and detections allows
full introspection of object-level decisions

added support for object shape features (Feret diameter, Hu moments, cirtularity)

added support for multiple directory selection for projects where each scan is a directory
images with labels show image names in italics

new auto-stretch of image brightness with slider-based adjustment in spectral plot menu

3.0 22-mar-2021

¢ improvements in regression

(0]
0]
(0]

(0]
(0]
(0]

support for multiple regression variables
significant speed-up when updating regression data sets
separate commands for model search, retraining model and applying model both to data and
on a new scan
import regression meta-data from Excel also at region level (via named regions, see below)
easy inspection of outliers: jump to a scan containing specific object/annotation point
runtime API for per-object and per-pixel regression output for each variable

= support for background pixel masking

¢ introducing user-defined regions

(0]
(0]
(0]

(0]
(0]

regions have unigue names within each image and are assigned to a specific class

regions can define object ground-truth labels

by matching regions to object found it is possible to estimate of confusion matrix at object level
and assess sorting performance

Excel export and import of region definitions

user-defined text annotation such as expert remarks can be added

¢ introducing feature extraction

o

extract and export user-defined features from objects or user-defined regions
" mean spectra
= gpectral index mean or histogram per object
= fraction of decisions per object
" regression output per object
= object count

0 information can be extracted from computed objects or from user-defined regions
= for regions, presence/absence of data is reported (e.g. no plant in a germination well)
0 export to Excel and XML formats
introducing batch feature extraction accessible from scripts without GUI via perClass_Mira_Batch.exe
0 export to XML format
0 define a template image specifying regions for extraction (e.g. grid of germination wells)
0 validating scans via a user-defined model rejecting data unseen in training
improvements to image flagging
0 set selected images for testing or training
0 set a percentage of selected images as test (to perform user-defined cross-validation studies)
batch crop applied to selected images
spectral index definitions are saved in the .mira project file
improves when processing large number of scans
0 ability to cancel long running operations (like result exports or regression meta-data imports)
commands to switch between band subset used for a classifier and for a regressor
possible to define band subset manually by band indices (e.g. 20:40 will enable bands 20 to 40)
0 adding and removing bands to/from existing band subset (useful to disabla certain ranges)
0 possible to set or toggle each Nth band
new project type for Silios CMS cameras

2.4 28-sep-2020

added reflectance correction for Headwall project type (correction by whiteReference and
darkReference ENVI cubes in the same directory)

O allows loading of externally corrected cubes in the same project
enables multiple scans per directory sharing the same correction
default cube extension is .bin, arbitrary extensions are supported
to apply correction at runtime, pass directory containing whiteReference and darkReference
scans to mira_LoadCorrection (example:
m ra_LoadCorrection(pnr,"path_to_dir_with_correction_files", NULL))
added general ENVI project type supporting arbitrary cube file extension
added Corning project type

0 added perClass Mira Runtime support for native BIP data stream corrected with dark reference

inside the camera

improved selection of multiple images (click and drag supported, no image reload in multiple selection)
improved drag&drop of directories (adding all files within each dropped dir)
added support for NVIDIA CUDA11 (Ampere)

when using floating licenses, specific licensing product can be requested based on
fl oati ngLi censeProduct setting in mira.ini (m r a for perClass Mira Dev and mi r a. gui for
perClass Mira)

when importing regression annotation from Excel, existing points are removed to avoid duplicates
fixed a problem when adding regression annotation to all objects in each scan

fixed problem when label painting with large brushes

fixed memory leak in loading large number of specim FX scans

fix for dropped frames at the start of live acquisition session

at runtime, all projects (including line-scans) must explicitly enable object segmentation with
nmra_Set Segnent ati on(pnr, 1)

o OO

2.3 26-jun-2020

support for foreign object detection with trully unknown objects
O label materials you know. Enable Show unknown to highlight all materials unseen in training.
O user-adjustable sensitivity on per-class basis provides extra control (slider via the right-click in

the class-list)
O objects unseen in training can be segmented out (flag Unknown decision as foreground)
O the new foreign object optimizer is on by default, can be disabled in Classification menu.
¢ color wells display transparency (change alpha for a specific class in the color dialog or by via alpha
toolbar button by holding Ctrl)
® crop improvements
0 crop rectangle line thickness auto-adjusted for very large cubes
0 adjust crop rectangle by dragging lines
¢ segmentation improvements
0 support for up to 20 foreground classes including access to their content information
0 per-object results can be batch-exported to Excel including per-class content in each object
0 fix for a crash due to changing object size in live acquisition mode
¢ confusion matrix improvements
0 added light mode (to allow copy/paste directly to documents)
O added option to copy as text for direct copy/paste to Excel
¢ fixed live acquisition issue when Specim calibration file (.scp) was not found
¢ fix for min/max visualization setting in presence of NaNs and infinite values
¢ support for case insensitive fields ENVI in header files (for Python integration)
¢ runtime improvements
0 support for region of interest (ROI) for snapshots. Applying classifier only to specific ROI.

0 support for object segmentation for snapshot use-cases (Imec project type, float data type, BIP
layout)

2.2 29-apr-2020

¢ new Visualization mode showing computed indices using different common equations
0 define using individual wavelengths or wavelength ranges
0 auto-scaling and manual scaling
O indication of below, above and invalid values
0 define wavelength ranges interactively in spectral plot
0 render using different colormaps

¢ improved regression
0 visualize per-pixel regression output (e.g. distribution of moisture)

import point annotations from Excel (matching scan names exactly or with regular expressions)
move and edit point annotations
use only specific subset of spectral bands
show cross-validated regression error (RMSECV) which has the same units as the regressed
value
when hovering over the results in the regression plot, display specific annotation points with
their true and estimated values
0 visual indication that some point annotations are not linked to objects (e.g. point not on
foreground class)
O export regression results in Excel together with per-object size, bounding boxes, true and
estimated regression outputs
¢ perClass Mira Runtime improvements
0 added model export for perClass Mira Runtime (hew "Mira Pipeline" .mpl format using base64
encoding)
O added API to query expected data type, data layout and geometry of data from spectral
camera
0 added support for all object segmentation configurations created in the GUI including per-
object content retrieval and object classification by rules
O added snapshot processing mode (mira_ProcessCube). Currently only pixel decisions are
provided, not yet the object segmentation or content.
¢ added support for Oceanlnsight Spectrocam and Pixelcam data formats

¢ added support for ENVI cubes with uint32 data type and little-endian float

(ol ololNe)

(@)

added classifier preprocessing (smoothing, 1st and 2md derivative)
export and import labels as PNG images

export per-image results to Excel allowing quick summary of fraction of decisions within foreground
(e.g. disease within plant leaves)

update of live acquisition using Specim SpecSensor SDK
O Applying regression both per-object and per-pixel in live acquisition
O Calibration pack information stored in settings, reused for further sessions
fixes in object pannel: When retraining the classifier, object classification rules are preserved
adding default class color map
repeatable object label colors (can be change using random seed dialog)

added per-class transparency (alpha setting in the color dialog and using the toolbar transparency
slider - hold Ctrl to change only the current class alpha)

2.1 18-feb-2020

Specim FX project type allows scan directories with different name than raw cube in capture sub-folder
Unicode support in image file names for ENVI-based formats

providing informative error messages when image cannot be loaded

adding Cubert Tiff project type with native support for Cubert Ultris camera

adding Headwall project type

license file can be drag & dropped from Explorer to the license dialog

RGB bands are set based on ENVI header file

mira.log file is now written to AppData/Roaming, not to the installation directory (now by default in
Program Files (x86))

fix of calibration pack loading in SpecSensor
labels can be exported into .png files
ENVI import supports int16 data type

when the number of sampes is too low, the output window shows a red message that can provide
details on click

when alpha is too low (high label transparency), the toolbar alpha button blinks to remind the user that
labes may be badly visible

2.0 18-0ct-2019

new Cubert ENVI project enabling data from Cubert Ultris and upsampled UH185 images
perClass Mira Runtime binaries adding dongle support

2.0 10-oct-2019

adding support for double-precision ENVI data cubes

supporting model deployment for execution on live data from Cubert Ultris light-field hyperspectral
camera

enabling Cubert plugin export for ENVI-based projects.

fixes in live acquisition using Specim FX cameras when device loading fails or opening FileReader gets
cancelled

fixing a crash due to very large training set

fixing a bug in error visualization mode where switching to images without labels did not show proper
image

2.0 20-sep-2019

Fix: Installation directories with non-ASCI characters are now supported

Live acquisition executables for Specim cameras included (perClass_Mira_live.exe and
perClass_Mira_gpu_live.exe)

e Senop project: Images are automatically processed with per-band gain

2.0 6-sep-2019

¢ Estimate object quality using regression (examples: sugar content estimation per tomato)

0]
0]
(0]
(0]
0]

annotate quality per object

automatic model selection reporting performance (R*2 and Q”2 statistics)
user-defined pre-processing (smoothing and derivatives)

apply regression to new images (show a bounding box + regression output per object)
allow localized information extraction by a radius around annotation points

¢ Images can be flagged for testing only (not used for building the model)

o

Test confusion matrix provides a detailed view of the performance on test images

e Error visualization mode brings insight in model performance.

0]
0]

(0]
(0]

visualize where the current model fails

this helps to identify incorrect labels or (together with test image flagging) whether the data is
well represented in the training set

Image confusion matrix shows only labeled examples on the current image

interactive error visualization by moving mouse over the image confusion matrix

¢ Object segmentation mode with multiple options

(0]

o

(0]
(0]

one object / one class mode for object detection (e.g. detect plastic pieces in a food product
stream for automatic removal)

one object / multiple classes for object classification (e.g. detect potato pieces, classify entire
piece as defective if it contains more than 5% of greening or rot inside)

visualizing object labels or object decisions

object decisions by majority vote or rules (size of or fraction of a specific class)

¢ Usability improvements

(0]

(0]

(0]
0]
(0]

assign label stroke to the current class. This allows one to exclude a specific label stroke
from training and see the impact on model performance (define an additional class and
exclude it, assign strokes to it and retrain)

the data validation mechanism excluding invalid spectra is now off by default. It can be enabled
using context menu in the spectral plot.

all modes (labels, decisions, errors, objects) accessible by direct keystrokes

confusion matrix size can be decreases/increased (useful for large number of classes)
auto-check for software updates + direct link to download latest version from the GUI (Help /
Check for updates)

¢ experimental Live data acquisition from Specim FX cameras using Specsensor SDK (needs to be
installed separately)

0]
(0]

(0]

apply a classifier and object segmentation to a live data stream
live visualization of processing speed and drop frame indication to assess production
performance
user-control of exposure and camera frame-rate
supports practical situations where production light conditions are diffrerent from the training
situation
= the white and dark references used for live data processing can be specified without
model retraining
automatic handling of spectral and spatial binning based on specific scan meta-data
support for outdoor operation: Define white reference by specifying an image region where
a reference tile was placed
recording data from a live acquisition in the standard LUMO format

1.4 22-may-2019

¢ perClass Mira Runtime is now included in the distribution

o

high throughput (1.5ms/frame on NVIDIA GPU in an example foreign object detection project,
Specim FX17, 640 spatial pixels, 224 bands, 6 materials)

0 the runtime directly reports object positions, sizes and classes

0 support for NVIDIA Jetson platform (both ARM CPU and NVIDIA GPU backend)

0 support for line-scan use-case on Specim projects (specific white/dark correction format)
¢ Linux build for both perClass Mira GUI and perClass Mira Runtime

0 accelerated CPU and GPU support on Linux
¢ new high-throughput segmentation engine

0 automatically discarding objects smaller than user-defined minimal size

0 supporting multiple foreground classes

0 high-speed line-scan segmentation with constant per-frame speed
o export visualization as PNG images (band or RGB, with labels, pixel decisions or segmented objects)\
¢ for Cubert projects, proper wavelength ranges are shown

1.3 8-feb-2019

¢ zoom using mouse wheel now follows cursor

¢ image rotation using toolbar buttons (and > < keyboard shortcuts)

¢ adding images using drag and drop from Windows explorer

¢ support for ENVI files with high-endian byte order uint16 (byte order=1)

¢ saved projects now preserve settings of the current band, R,G,B lines and allow direct execution of the
trained model when project is loaded

¢ exported decision images (PNGs) contain meta-data such as class count and class names accessible
by standard tools such as tweakpng or Matlab i nf i nf o command

¢ multiple directory selection for Specim FX and Tiff stack project types can be enabled in mira.ini file
(using useNat i veDi r Sel ecti on=f al se). Itis not enabled by default because it uses a non-native
file dialog.

¢ new project type for Senop cameras (formerly Rikola)

1.2 5-dec-2018

¢ Added band-selection widget. It is now possible to manually select the wavelengths used for building
models

0 Band brushing allows quick selection or clearing of wavelength ranges
0 Exported models start from the full set of wavelengths but use only the selected subset for the
model. This allows quick deployment of different models to custom applications assuming full
spectrum (single binding with perClass Runtime is needed)
¢ Added export of labeled data to perClass Toolbox sddata format
¢ Added export of entire data cube in Matlab format as 3D matrix

¢ Models results are now repeatable with a new random seed dialog controlling the internal data
partitioning process.

¢ Separate CPU-only and CPU+GPU builds are available. The CPU-only build is always available by
default to avoid issue related to GPU drivers or CUDA versions installed. The CPU+GPU executable is
called perClass_Mira_gpu.exe

¢ Band index and the wavelength number are now updated on the status bar when dragging the band line
in spectral plot

¢ Added support for logging of status messages when starting up the application. This is useful to
understand some issues with GPU installations and CUDA versions. Logging is off by default, can be
switched on in the mira.ini file.

¢ Licensing improvements:

0 For activated licenses, there is now an auto-update mechanism that pulls updated license from
the activation server when the application starts. The application may be used without on-line
connection - it is needed only once in two weeks.

0 Adding support for floating licenses obtained over network from a license server. Floating
licenses are now checked out one per session.

¢ Fixed wrong file name of previous project used for saving new project with File/Save command
¢ Fixed a crash when preview image could not be loaded

http://entropymine.com/jason/tweakpng/

1.1 10-sep-2018

confusion matrix view showing detailed error information
0 interactive performance optimization in a confusion matrix (slider in right-click context menu or
a mouse wheel on confmat entries)
0 confusion matrix shows normalized errors and precisions, absolute sample counts available as
well
0 quickly switch to confmat with 'c' key and to spectral plot with 's' key
0 define performance constraints via double click on a confusion matrix field (create/remove
constrain)
0 constraints may be adjusted live by Ctrl+mouse wheel
0 constraints may be enabled/disabled to understand available performance options
0 move between available solutions fulfilling all constraints with [and] shortcuts
preview image from user-adjustable R,G and B bands when spectral cube is loaded
O this view improves labeling experience for many material types that look similar in a single band
but their differences may be highlighted in R,G,B view
undo/redo for label painting speeds up labeling
image crop providing significant memory use reduction and processing speedups
0 when a project with a cropped image is loaded, the original cube is loaded and cropped
0 original cube may be loaded as a new image and multiple crops from the same cube are
supported
including perClass Runtime DLL and example of spectral cube processing in C
O support for both single precision and double precision pipelines (with a new perClass 5.4
Runtime)
0 significant speedup of exported classifiers
0 legacy export option supporting older deployed runtimes <= 5.2
a preview rotation command allows one to fix the rotation between preview and spectral cube (e.g. on
Specim IQ projects)
adding an option to exclude a class from training (right-click in class list or press 'x’)
O this allows one to quickly check the impact of specific classes on the overall solution
option to purchase a license online and directly turn the demo into a commercial product
dialog to request Skype/Teamviewer session on start up
fix for a wrong class index after removing a class
fix for clear labels of an image

1.0 13-jul-2018

fix for a dock shift bug (when resizing a docked window and clicking on the image, the docked pannel
resized back)

adding band line dragging by mouse
adding max valid line which is automatically set on image load

when user is on preview and tries painting, a dialog is shown to load the entire cube (allows quick
image changing without load)

1.0 29-may-2018

first public release

Application Server

perClass Mira provides an Application Server functionlity that enables remote control of perClass Mira GUI
over TCP/IP networking protocol. The use-case for the Application Server is a quick construction of
live visual demonstrators with camera and perClass Mira processing in the custom control loop.

The following scheme clarifies the Application Server operation. The Application Server (3) is running under

perClass Mira Documentation

perClass Mira Dev (1) enviroment. It listens to commands sent from a custom interface (7). The commands
can control the attached camera (2). If the solution is able to detect objects in the live data stream, their
coordinates are passed over a separate connection to a listening component (8) that can act on the
detections.

The Custom Machine (10) is a demonstrator controller that may also involve an actuator such as a PLC or a
robot arm. Custom application logic (9) can leverage the Application Server (3) to bring perClass Mira live
processing and visualization capabilities in custom control loop using only simple text commands.

Kﬁ perClass deployment setup on PC

Design stage Deployment stage

3 perClass
data Application Server 7 Command
stream Component intarface
9 Custom high-level
—_— control logic
—
2 Spectral

camera 1 perClass Mira Dev 8 Coordinates of

detected objects

10 Custom machine

C White/dark
o references

A Training and
test scans

Enabling application server

Application server is only available in perClass Mira Dev product and requires presence of "appserver
licensing option in the license file.

Check whether the current license offers Application Server functionality

¢ Inarunning perClass Mira instance, select Help / Open license directory command. A Windows
Explorer window will open in the directory containing licenses and settings (C:
\Users\USERNAME\AppData\Roaming\perClassBV)

¢ open the license file present (by default mira.lic) in a text editor

¢ The Application Server is available only in perClass Mira Dev licenses. Therefore, the license file needs
to start with LICENSE prsysd mira
0 If the license file starts with LICENSE prsysd mira.gui, the current license is perClass Mira
(GUI only) and cannot run camera acquisition or Application Server.

¢ the license options field should contain appserver string in order to use the Application Server
O Note that to control acquisition, also acquisition support needs to be present (acq option)

Enable Application Server function
By default, Application Server functionality is disabled. We can enable it in perClass Mira settings file
(mira.ini).
¢ close any running instance of perClass Mira
¢ open the C:\Users\USERNAME\AppData\Roaming\perClassBV\mira.ini file in a text editor
¢ Edit the line with startCommandServer command so that it is enabled:
0 startCommandServer=true

150/ 191

perClass Mira Documentation

¢ Save the mira.ini file

¢ Start perClass Mira
0 Select the connected camera for acquisition or a filereader

The perClass Mira output windows should list the note on open Application Server ports:

Output X

perl_'.iasg Mira 4.2 {13 mar-2023} build 0814, Windows 10 (10.0), CPU+GPU
s baded from 'C:/Users/ pa.-wl,- AppData/Roaming/ perClassBV/ mira.ini
l['l. Platform: I‘UD‘-" ime 11.2, Driver: 11060

lass Mira Mehpmnt Commercial hoense gsued on 14-mar-2023, expiration on 28-mar-20232 (in 15 days)
Command TCP/IP server server Istening on 0.0.0.0 port 51234
Object |:||-"‘F|:Tu|1 TCP[IP er server istening on 0.0.(ort 51300
Froject type: periiass
CUDA: NVIDIA GeForce RTX 2070 Super, 8192 MB, CUDA Compute 7.5
Searching plugins at: rogram Files/p Mira,/ bin
.ﬂ.ttq?rmtnu 0 utstion plugin File er via Fle Reader 1.3.0...

fiereader_1.3.0.dl

perClss Mira 4.2 (20-4an-20 23) buid 0841, FleReader plugin 1.3.0 (1.07)
Enablng source |:|hJ|:|l'| Fie Reader via Fle Reader 1.3.0
Setting acquisiion window height to 500 phelk/ines

When opening the application for the first time, Windows OS may request user consent to open the ports in
a separate window.

If you cannot see the ports open, double check that you're not running any security software preventing
that perClass Mira application opens TCP/IP ports.

Communicating with the server

Application Server listens on TCP/IP port 51234.

In order to communicate with the server, we need to send TCP/IP text commands from some external utility
to perClass Mira. In our example, the utility may run on the same computer as perClass Mira. This is
necessary. Typical demonstrators will run perClass Mira on a separate computer dedicated to a "second
screen” and control it from already available control computer or PLC system orchestrating the entire
process (belt control, actuators, lights etc.)

In the following example, we use the free PacketSender software you may download from:
https://packetsender.com/

To prepare perClass Mira for running the Application Server session, we need to initialize an acquisition
device (either a camera or a filereader).

Once we are able to start and stop acquisition from perClass Mira side, we may do the same remotely.
Application Server provides a number of text commands that invoke actions.

TIP: perClass Mira installation contains a ready-to-use data base of commands in PacketSender format in
the lib directory. You may import these to a PacketSender session.
In PacketSender, we define two commands, namely "acq start" and "acq stop". For each command, its

name and payload (content) are defined in the section o . Secontion 9 defines the Application Server
machine address and port. In our situation, we fill "localhost" as both perClass Mira and the PacketSender
run on the same machine.

We can send the command by pressing Send button 9 . The command can be saved for later use with

o

Save button

151/191

https://packetsender.com/

perClass Mira Documentation

Packet Sender - [P 102 168.230.1, 192.168.75.1, 192.168.50.74, TeBl-eeTb:Saed: 1abcsed T athemet_32760, (sB0-38T12c0513.. —

File Tools a5t Fanels Help

7~

To Address To Port Method

B Send server stam localhost 31234 TP a0gq Sanirn 6163712073 746172 740d 0a

B Send Server stop lpcalheo 51234 TCE 00 stophrin 712073 14 6F 10 Ok

1 i Oa

Clear Log () Log Traffic Sevaleg Seove Traffic Packet Copy bo Chipboard

T Freen B Freen Port A fice e " AL i

o UDPTE3TIZ M TCP:S3l6: @l 55153163

In perClass Mira window, we will see the text command listed in the Output Windowo and the acquisition
will start:

=
Fie View Data Chssfication Regression Camera Window Heb
£ X B & Q@ & E
L =
[=hplc] Irages Pause Raw Zoomin Zoom out Alpha
Classes X
Unknown o

cording Confusion matrix Regression Visualzation Spectra
- - E Camera speed 10.00 ms, 100.00 fps
a ’ o
Sy, " Classfier speed
Total speed (nd.acqusition)

- - Exposure: 100 v Famerate: 100 5 Maxframe rate: 100

rrax raw deply value 4094 v band 113 3

Stop

Speed Focus Auto-exposure Square phel

Output X

reading Camera Exposure: 1
Miernnnertng tenfin chent
Command TCP/ITP Server naw connaction from (=ff-127.0.0.1:53748)
Data read: ‘acy start *
readng Camera.Exposure: 1
reading Camera. Exposure: 1
Acquisition started
reading Camera.Exposure: 1
reading Camera,.Exposure:
Disconnectng topfip clent]

Below you can see, that the PacketSender window lists both the command sent o and also the response

152 /191

perClass Mira Documentation

of the Application Server 9 . The response always starts with "ok;" or "error;" string denoting whether the
command is understood, followed with the actual command string, another semicolor delimiter and an
aditional comment.

Liasd Fibe
*
Sand
Dpbatn Sovind Pocket
To Acddress To Part Method ASCTT HiEx
server stan 0 localhost 51234 TCP acy startryn i T4 6172 74 0d Da

LEPET SEOD 0 ocalhost 51234 TCP acq stophrin o1 6371 2073 74 &1 70 0d Oa

Chsar Log (2) Log Traffic Save Traffic Packet Copy to Cipboard

From: Pork To Address:

o UDP63712 o TOP-S3162 dle SSL

Command list

Available commands of the Application Server

Generic commands

* acq start - start acquisition
* acqg stop - stop acquisition
* acqg state - return acquisition state
0 example response: "ok;acq state;1"
= 1 = acquisition initialized but not running
= 2 = acquisition running
¢ acq info enable - enable object detection reporting on separate object stream
¢ acq info disable - disable object detection reporting on separate object stream

¢ acq info totalsize - return the total size of objects detected in the session
0 the total object size counter is reset when starting acquisition

¢ acq darkref record - record dark reference
O Only full frame references are supported (non-uniformity)
0 reference recording does not automatically close the shutter. Use camera-specific shutter
command before to close the shutter and reopen after the reference recording.

¢ acq whiteref record - record white reference

153/191

0 Only full frame references are supported (non-uniformity)

¢ view clear - clear the display
¢ view save FILENAME - save current display into PNG file named FILENAME in current directory (top-
level data directory)
¢ view acq MODE - set specific view mode
raw - view the raw data stream
corrected - view the reflectance corrected data stream (references need to be acquired)
decisions - show the decision layer (model needs to be defined)
objects - show object detections. The model and object segmentation needs to be defined in a
model
0 waterfall - set the view type as waterfall (overwriting the data in a cyclical fashion)
O Dbelt - set the view type as a belt view (the stream moves like if watching belt from the top)
¢ decisions - return the comma-separated list of model decisions

O Example output when running a four class classifier:
"ok;decisions;background,leaves,shells,nuts\n"

(ol oleolNe)

Control of perCass Mira Stage

e stage connect - connect to the stage

¢ stage disconnect - disconnect from the stage

e stage stop - stop any stage movement

o stage left | right | center - move the stage right, left or center

¢ stage position POS - moves the stage to the position POS (in mm). If POS is omitted, the current
position is returned

¢ stage speed SP - sets a specific speed SP (in mm/sec). If SP is omitted, the current speed is
returned

¢ stage scan - working with the scanning area
0 stage scan - returns start and end position of the scanning area
0 stage scan START END - sets the start and end position of the scan area
0 stage scan start - moves the stage to the current START position
0 stage scan end - moves the stage to the current END position
¢ stage cycle - starts cycling between START and END scan area

¢ stage white - working with the area of the white reference
0 stage white - returns start and end position of the white reference
0 stage white START END - sets the start and end position of the white reference
0 stage white start - moves the stage to the current white reference START position
0 stage white end - moves the stage to the current white reference END position

Camera specific commands - Headwall MV.X

¢ mvx Shutter.Close - close MV.X shutter
¢ mvx Shutter.Open - open MV.X shutter

Camera specific commands - Specim Specsensor SDK

This specific interface mirrors command functionality of SpecSensor SDK. Please refer to SpecSensor
documentation on the SDK commands for more details.

Basic commands to open and close the shutter:
¢ specsensor Shutter.Open - open the shutter
¢ specsensor Shutter.Close - close the shutter

Extended commands

¢ specsensor Shutter.IsOpen - return if the shutter is open

¢ specsensor Shutter.IsConnected - return if the shutter is connected.
¢ specsensor Shutter.IsToggle - return if the shutter is toggled (flipped)

¢ specsensor Shutter.IsToggle X - pass value to SpecSensor IsToggle

0 the value can be "enable", "on" or "true" or "disable", "off" or "false"
0 Example: "specsensor Shutter.IsToggle enable"

Example communication using Tcl

This section shows simple communication with Application Server using Tcl command language. Tcl is a
very simple scripting and command language.
For more information on Tcl, see

¢ Official website: http://tcl.tk/
¢ Windows binary distribution can be found here:_https://www.magicsplat.com/tcl-installer/index.html

Other scripting environments, like Python, should be able to control Application Server in very similar
fashion. The Tcl is chosen for its simplicity. We can get the communication going using few socket
configuration commands.

Setting up Application Server communication in Tcl

Creating a socket on localhost port 51234

% set so [socket |ocal host 51234]
sock000001F0932F2CB0

Configuring the socket buffering to line:
% fconfigure $so -buffering line

Defining a new command called sendcmd that writes content into the socket, reads and returns the
response:

% proc sendcnmd {so cmd} {puts $so $cnd; gets $so data; return $data}

Controlling Application Server from Tcl

We can now send commands to the Application Server and receive the responses:

% sendcmd $so {acq start}
ok;acq start;starting...

% sendcnd $so {acq stop}
ok; acq stop; stopped

Receiving information on object detections

The Application Server provides the second TCP/IP channel where object detections are announced. We
open the second Tcl comand shell, create an async socket and define a call back function that would be
executed, when any data arrives. In the callback, we print the data sent by Application Server to the
standard output. If the socket is closed, we close the processing.

We can past the following code to the Tcl command shall:

proc readbData {serverChannel} {
gl obal end
set noOf Chars [gets $server Channel data]
if {$noCFf Chars!=-1} {
puts "read: $data"

}

http://tcl.tk/
https://www.magicsplat.com/tcl-installer/index.html

if {[eof $serverChannel]} {
cl ose $server Channel
set end 1

}
}

set sd [socket -async |ocal host 51300]
fconfigure $sd -bl ocking 0

fileevent $sd readable [list readData $sd]
vwai t end

The first part defines the callback function. Then the socket is created and configured as non-blocking. The
event callback is set on the socket connecting our callback function.

Finally, we enter event loop using "variable wait" vwait command. It blocks the system processing events
until the variable "end" is created.

The complete application setup is shown in the following screenshot. Apart of the perClass Mira window, we

have two separate shells (one Tcl shell
e e to the object detection channel on port 51300, perClass Mira Output

window displays the connection details e . In the command shell o , We can now start the acquisition
using "acq start" command (note that also "acq info enable” cammand was run to enable object reporting
and the display was set to show objects (not shown on the screenshot).

to issue commands and one shell receiving object detections

). .Once we connect in

As soon as the objects are detected in the live stream , the respective messages are sent over the

object detection socket, captured in and printed to the standard output.

Help

H E B

Decisions [ulErasd Zoom in \pd - Tel command shell

perClass Stage

perClass Stage is a linear lab-scanning kit tightly integrated with perClass Mira. It supports a range of line-
scan and snapshot spectral cameras through easy-to-exchange mounts.

WARNING! Assembly should be performed by instructed personnel. Using excessive force for assembling
or disassembling the stage has a risk of damage. All parts are designed such that the

Linear stage can be assembled without the use of (power)tools. The interconnection is made using manual
clamp levers.

perClass Mira Documentation

Vertical post
Pl
-
Camera Interface
'
v |
L [L]
Light frame @ Light module
i

Stage plate /

 Stage

Assembling instructions

Remove all components from the Peli Case enclosure

Place the stage (base) on a flat surface

Slide the vertical post, with the alignment plate at the rear, in the stage slot
Tighten the vertical post by attaching the manual lever

Slide the light frame in the vertical post

Tighten the light frame with an M8 T-nut and manual clamping lever
Connect each light module using an M6 manual clamping lever from the inside of the light frame, to the
light module thread

8. Slide the camera mount in the vertical post

9. Tighten the camera mount with an M8 T-nut and manual clamping lever
10. Adjust all parts if needed and secure all connections safely

11. Connect a camera to the camera mount

12. Connect the light power cables and secure the loose cables

13. Power the perClass stage

NoobkwbE

157 /191

7. Connect a camerg with the camera mount

4. Slide the camera mount in the
verlical post and tighten it using
the lever provided with if.

5. Connect each light module in
the light frameusing the lever

4. 3lide the light frame in the vertical post
s and tighten fhe frame using the lever

3. Slide the vertical post in the stage slot
and tighten the vertical post using the
lever

2. Place the stage on a flat surface

1. Remove all the components from the Peli case enclosure

Disassembling instructions

Depower the perClass Stage

Wait for the light modules to be of reasonable temperature

Disconnect all cables

Disconnect the camera mount plus camera

Disconnect the light modules

Disconnect the Light frame from the vertical post

Disconnect the Vertical post from the perClass Stage by unscrewing the manual lever (do not tighten
the manual lever after removing the vertical post).

NoobkwbE

perClass Mira Documentation

4. Disconnect the light modules
from the light frame

159/191

2. Disconnect all the cables from the light module to the base

3. Disconnect the camera and remove
__the camera mount fromthe vertical post

5. Remove the light frame from the vertical post

-

é. Disconnect the vertical post from the stage by
__unscrewing the stage clamp

Supported cameras

Headwall

¢ MV.C VNIR using MV.C holder
¢ MV.C NIR using MV.C holder
¢ MV.X using MV.X dedicated holder

¢ Any camera using 1/4 standard mount

Supported spectral cameras

Cubert
¢ All cameras supported by CUVIS 3.2 and later SDK such as Cubert Ultris S5, X20

HAIP

¢ Blackindustry supported fully for live acquisition and processing

¢ BlackMobile supported to synchronize data from on-board storage and model building (via perClass
project type)

Headwall

e MV.CVNIR
e MV.CNIR
e MV.XVNIR

O perClass Mira models can be deployed for on-board processing on the MV.X
O MV.X cameras can be used as generic acquisition devices using Pleora eBUS (separate
license needed)

¢ Cameras supported by the legacy Hyperspeclll SDK, currently VNIR and NIR systems currently
excluding the SWIR camera

Imec

¢ For acquisition and processing: Imec Mosaic devices such as RedNIR and SWIR
¢ Starting from acquired scans: Imec SNAPSCAN

Inno-spec

¢ RedEye2 supported using Pleora eBUS (separate license needed)

Resonon

¢ Both VNIR and NIR systems using the legacy Resonon SDK
Silios

¢ All Silios camera supported by Silios SDK

Specim

o All cameras supported through Specim SpecSensor SDK (such as Specim FX10, FX17, FX50, SWIR)
¢ When using Pleora eBUS directly, all cameras that are GenlCam compatible (such as FX10,FX17)

Unispectral

¢ Unispectral Monarchll

Cubert

In order to acquire data using Cubert cameras in perClass Mira, Cubert CUVIS SDK needs to be installed.

Installing CUVS SDK:
¢ Install CUVIS 3.2.0

o Make sure the directory containing “ cuvis.dll” is in the PATH environment variable: “ C:\Program
Files\Cuvis\bin”

¢ Make sure the following directories exist: For newer plugins (may need to copy from CubertFuchsia):
0 C:\Program Files\Cuvis\factory
O C:\Program Files\Cuvis\user

Connecting to the camera

¢ Make sure the property “ ULTRIS5_GevSCPD” is setto“ 10000 in“ C:\Program
Files\Cuvis\usensettings\ultris5.settings”

¢ Go to the ethernet adapter settings and setup a static IP address

0 Setthe IP to 192.168.200.5 (or anything in 192.168.200.0/24, except the device IP address)

O Set the subnet mask to 255.255.255.0

0 Ifrequired set the gateway to 192.168.200.254 (or anything in 192.168.200.0/24, except the
device and your IP address)

O You may set the IP and subnet using this command from Windows cmd shell, started as
Administrator

netsh interface ip set address nane="Ethernet" static 192.168.200.5
255. 255. 255. 0

Extra hints
¢ Disable the power saving options for the ethernet port, for instance
0 Energy-Efficient Ethernet
O Green Ethernet
0 Power Saving Mode
¢ Make sure firewall is not blocking perClass Mira on public networks
¢ Make sure that there are no other Cubert plugin versions in the Mira installation directory

Pleora eBUS

perClass Mira supports acquisition from eBUS 5.1, 6.1 and 6.3. Note that only one eBUS release can be
installed at a time. It is adviced to use the newest release available.

¢ Install Pleora eBUS Runtime
O You may download Pleora eBUS Runtime 6.3 here
o Computer restart is needed after eBUS installation in order to make kernel drivers active

¢ Make sure that no machine vision or camera software is providing additional, incompatible, version of
Pleora eBUS.

0 Specifically, make sure that Specim Specsensor or Imec SDK are not on the path

TIP: You may append a string to each of the paths in system Path environment variable to make it not
found. For example appending DISABLED. This allows you to easily bring these dependencies back when
you wish to use other camera types

Headwall

Headwall MV.X

Headwall MV.X integrated system may be used together with perClass Mira in two different modes:

1. As a standalone camera, using Pleora eBUS

2. Deploying solutions, built in perClass Mira, onboard of the MV.X unit using the integrated perClass Mira
Runtime

Standalone camera use

¢ Pleora eBUS should be installed
¢ Connect Ethernet cable to port 2 on the MV.X unit
¢ Set the computer IP to 10.0.65.1 (or anything in 10.0.65.0/24 range, except 10.0.65.50 that is
dedicatet to the MV.X web interface)
O Set the subnet mask to 255.255.255.0
0 Ifrequired set the gateway to 10.0.65.254 (or anything in 10.0.65.0/24, except 10.0.65.50 and
your IP address)

On-board processing using perClass Mira Runtime

¢ Solutions, exported from perClass Mira can be run on-board of the MV.X system using the integrated
runtime

0 Export the classification model using Classifier / Export classifier as a pipeline / perClass
Mira Runtime (single precision) command

https://we.tl/t-0UBp0DQen6

Headwall MV.C NIR

Installation instructions

e |nstall Pleora eBUS 6.1 or 5.1

Network interface settings

¢ Go to the ethernet adapter settings and setup a static IP address
O Setthe IP to 169.254.1.1 (or anything in 169.254.0.0/16, except the device IP address)
O Set the subnet mask to 255.255.0.0
O If required set the gateway to 169.254.254.254 (or anything in 169.254.0.0/16, except the
device your IP address)

Avoiding dropped frames

¢ Disable the power saving options for the ethernet port
O Energy-Efficient Ethernet
O Green Ethernet
O Power Saving Mode

¢ Make sure no firewall or security application is blocking perClass Mira application

Headwall MV.C VNIR

Installation instruction for Headwall MV.C VNIR camera

¢ Download and install Ximea xiAPI SDK: https://www.ximea.com/support/wiki/apis/xiAPI

¢ Put the C:\XIMEA\API\XiAPI path to System Path variable:
0 Open Windows Settings, fill "env" and select Edit environment variables for your account
O Edit the Path environment variable
0 Make sure the C:\XIMEA\API\XiAPI directory is on the path
0 Start perClass Mira application again for the change to take effect

Troubleshooting

Camera returns -503 error in perClass Mira
This may be cased by improper USB connection. Please make sure the camera is connected directly to
the PC, not to a USB hub. If possible, try different USB connections.

Resonon

perClass Mira supports Resonon cameras through Resonon SDK provided by camera distributor or
Resonon Inc.

In perClass Mira installation, two separate acquisition plugins are included, one for the VNIR Basler-based
cameras and one for the NIR AlliedVision-based sensors.

In order to to acquire data from Resonon camera:
¢ Install Resonon SDK (3.8 or higher)
¢ Add path to C:\Program Files\ResononAP\bin64 directory to Windows Path environmental variable

perClass Mira Documentation

For NIR cameras

¢ the AlliedVision VimbaC SDK needs to be installed (it is part of Resonon SDK installation)

¢ the following path needs to be present in Windows Path environmental variable: C:\Program Files\Allied
Vision\Vimba_6.0\VimbaC\Bin\Win64

perClass Camera API

Versioning
¢ mraacq_Cet Version

o niraacq_Get APl Ver si on
Initialization and cleanup

¢ nmraacq_lnit

¢ qmiraacq_Rel ease
Error handling

¢ miraacq_CetErrorCode

¢ mraacq_Get ErrorMsg
Acquisition device selection

¢ niraacq_ScanDevices

¢ miraacq_Cet Devi ceCount

¢ niraacq_Get Devi ceNane

¢ miraacq_OpenDevice

¢ nmraacq_C oseDevice
Acquisition initialization

o nmraacqg_InitializeAcquisition
] raacq_Cet FraneSi ze
raacq_GCet FraneW dt h
raacq_Cet FraneHei ght
raacq_Cet FraneBands
raacq_Get FraneDat aType

¢ niraacq_GCet FraneDat aLayout
Wavelength and spectral resampling control (optional)

¢ niraacq_CanRet ur nVavel engt hs

¢ miraacq_Cet FraneWavel ength

e niraacq_Set Resanpl i ng\Wavel engt hCount
e miraacq_Set Resanpl i ngWavel engt h

o niraacq_Set Resanpling
Running acquisition and obtaining data

¢ nmraacq_StartAcquisition
¢ miraacq_Cet Frane

¢ nmiraacq_StopAcquisition
Setting acquisition parameters

¢ nmiraacq_Set Exposure

¢ miraacq_Cet Exposure

¢ niraacq_Set FraneRat e

¢ miraacq_Cet FraneRate

3. 3 3 3 =

miraacq_Init

Initialize the camera acquisition environment.

maker nel * mraacqg_Il nit(const * pat h)

164 /191

Input: Path to a directory with a license file
Output: Runtime environment pointer.

Description:

The miraacq_Init function initializes the camera acquisition environment. It returns a pointer used for any
other API function that interacts with the library. We refer to this pointer a "runtime pointer" in the acuisition
library reference. Please note this is referring to "acquitision runtime" which differs from "processing
runtime" of perClass Mira. The processing runtime is initialized by mira_Init function. Its APl is described
here.

The acquisition runtime exposes data acquisition from a camera via specific acquisition plugins. Each
acquisition plugin name starts, by convention, with miraacq_ string followed by the plugin type and version
number. For example, the plugin exposing Headwall MV.C VNIR camera based on Ximea API is hamed
miraacq_ximea_1.6.0.dll

The input is a path to a directory where a license file with .lic extension can be found. Pass "." for the
current directory.

After initialization, m r aacq_Cet Err or Msg provides welcome string listing software version or error
message.

Example:
maker nel * =miraacq_Init(".");
printf("Init: %", mraacq_GCetErrorMg());
if(==NULL) return;

miraacq_GetVersion

Return version of the acquisition runtime
const * mraacq_Get Version()
Input: None

Output: Version string

Description:
m raacq_Get Ver si on returns version string together with the release date.

Example:

const char* str=mraacq_Get Version();
printf("Version: '%'\n",str);

Qut put :

Version: '4.2 (16-feb-2023)"
miraacq_GetAPIVersion
Return API version information

const char* mraacq_Get APl Version(int* pApi,int* pStep,int* pRev);

Input:

pApi - pointer to integer: Major outer API for all supported plugins

pStep - pointer to integer: Functionality version of this specific plugin (perClass Mira functionality changes)
pRev - pointer to integer: Revision of the functionality (only the plugin changes)

Output: Full version string including perClass Mira build info, lugin info and third party SDK version (if

perClass Mira Documentation

linked)
Description:
m raacq_Get API Ver si on returns full version string including information about the plugin and the linked
third-party SDK used. Via three integer pointers, it also provides the numerical API versioning.
Example:
int api,rev, step;
const char* str=mraacq_GCet API Ver si on(&pi , & ev, &st ep) ;
printf("APlI version: %l. %l. %l (%)\n", api,rev, step,str);
Qut put :

APl version: 1.6.0 (perClass Mra 4.2 (16-feb-2023) build 1548, Xinea plugin
1.6.0 (Xinmea APl 4.24.00.03))

miraacq_GetRecorderType

Return string name of the acquisition backend
const * mraacq_GCet Recorder Type()
Input: None

Output: Recorder (acquisition plugin) type string

Description:
m raacq_Get Recor der Type returns version string together with the release date.

Example:

const char* str=mraacq_Get Recorder Type();
printf("Type: '9%'\n",str);

Qut put :
Type: ' Xinea'

miraacq_GetErrorCode

Return error code
m raacq_Get Error Msg(maker nel * pna)
Input: Runtime environment pointer
Output: Error code
Description:

m raacq_Get Err or Code returns error code. For a specific string description,
m raacq_Get Error Msg

miraacq_GetErrorMsg

Returns error message.
const * mra_Get Error Msg(makernel * pma)
Input: Runtime environment pointer

Output: Error message string

166 /191

perClass Mira Documentation

Description:
m raacq_Get Error Msg returns error message as string. For a specific error code, use
m raacq_Get Err or Code

miraacq_ScanDevices

Scan available acquisition devices
m ra_ScanDevi ces(makernel *pna)

Input:
¢ Runtime environment pointer pmr

Output: Result: MIRA_OK or error code

Description:

m raacq_ScanDevi ces searches for available acquisition devices. After calling

m raacq_ScanDevi ces, one can get device count using m r aacq_Get Devi ceCount and names with
m raacq_Get Devi ceNane.

Example:
M RAACQ CHECK(m raacq_ScanDevi ces(pnma));
const int devCount=m raacq_Cet Devi ceCount (pra) ;
printf("\n%l devices:\n",devCount);
for(int i=0;i<devCount;i++) {
printf("% : %\n",i, mraacq_GCetDeviceNane(pm,i));
}

Error:
if(resl=MRA K) {
printf("Error %l: %
s", mraacq_Get Error Code(pna), m raacq_Get Error Msg(pma));
}

nm raacq_Rel ease(pnmm) ;
The M RAACQ_CHECK macro checks the output result. If error occurs, the program flow is terminated. See

miracg.h definition. Note that the MIRAACQ_CHECK macro expects an Error label defined. The following
code can display the error message and release the runtime.

miraacq_GetDeviceCount

Returns the number of acquisition devices found

m raacq_Get Devi ceCount (maker nel * pmma)
Input: Runtime environment pointer
Output: Number of devices found

Description:
m raacq_Get Devi ceCount returns the number of devices found by m raacq_ScanDevi ces.

miraacq_GetDeviceName

Returns the name of a specific acquisition device
const * mraacq_Cet Devi ceNane(nmaker nel * pna, devi cel nd)

Input:
¢ Runtime environment pointer
¢ Device index

167 /191

perClass Mira Documentation

Output: String name of a device

Description:

m raacq_Get Devi ceNane returns the name for a specific device. Before using

m raacq_Get Devi ceNane or mi r aacq_GCet Devi ceCount , the device list needs to be constructed by
m raacq_ScanDevi ces.

miraacq_OpenDevice

Opens specific acquisition device
m raacq_OpenDevi ce(makernel * pmma, devl nd)

Input:
¢ Runtime environment pointer
¢ Device index

Output: Result code (MIRA_OK or error)

Description:
m raacq_OpenDevi ce opens the specified acquisition device. The device list needs to be constructed
by mi raacq_ScanDevi ces.

Example:
M RAACQ CHECK(m raacq_ScanDevi ces(pma));
int devicelnd=0; // here we open the device 0
M RAACQ CHECK(m raacq_OpenDevi ce(pma, devi cel nd));
printf("Device opened: % ' %
s'\n", devi cel nd, m raacq_Get Devi ceNane(pre, devi cel nd));

The M RAACQ_CHECK macro checks the output result. See the usage example in
nm raacqg ScanDevi ces and miraacg.h for details.

miraacq_CloseDevice

Closes specific acquisition device

m raacq_Cl oseDevi ce(nmakernel * pna, devl nd)

Input:
¢ Runtime environment pointer
¢ Device index

Output: Result code (MIRA_OK or error)
Description:

m raacq_Cl oseDevi ce closes the specified acquisition device. Device needs to be previously openned
using mi raacq_OpenDevi ce

miraacq_DeviceIlsSnapshot

Returns if a currently openned device is snapshot camera

m ra_Devi cel sSnapshot (nekernel * pma

Input:
¢ Runtime environment pointer

Output: 1 if the currently openned device is a snapshot or 0 if not

168 /191

This function returns the type of currently openned device. If the device is a snapshot camera (providing a
full spectral cube with all bands for all pixels in a single call) or not. Devices that are not snapshots are "line-
scans" i.e. cameras that provide single pixel line and all spectral bands. To form a cube, a line scan camera
needs to acquire multiple spectral frames.

Therefore, while the width (pixel count) and band count of line-scan camera is defined by the sensor, its
height is 1 (single frame at a time).

miraacq_InitializeAcquisition

Initializes the acquisition
mraacq_InitializeAcquisition(makernel* pm)

Input:
¢ Runtime environment pointer

Output: Result code (MIRA_OK or error)
Description:

m raacqg_lnitializeAcquisition isneeded in orderto define geometry and data type of data
coming from the sensor.

miraacq_GetFrameSize

Get the size of the acquired image in bytes

m raacq_Get FraneSi ze(nakernel * pma

Input:
¢ Runtime environment pointer

Output: Size in bytes width if > 0 or an error code if <0

After the acquisition is successfully initialized by mi raacqg_I niti al i zeAcqui si ti on this function
returns the number of bytes returned by the sensor during acqusition.

miraacq_GetFrameWidth

Get the width of the data returned by the sensor

m raacq_Get FrameW dt h(nekernel * pma

Input:
¢ Runtime environment pointer

Output: Image width if > 0 or an error code if <0

After the acquisition is successfully initialized by mi raacqg_I ni ti al i zeAcqui si ti on this function
returns the width (number of pixels) returned by the sensor during acqusition.

miraacq_GetFrameHeight

Get the height of the data returned by the sensor

m raacq_Get Fr aneHei ght (neker nel * pnma

Input:

perClass Mira Documentation

¢ Runtime environment pointer

Output: Image height if > 0 or an error code if <0

After the acquisition is successfully initialized by mi raacqg_I niti al i zeAcqui si ti on this function
returns the height in pixels returned by the sensor during acqusition. For snapshot cameras, this

corresponds to the height of the cube returned in each acquisition step. For line-scans, this is fixed to 1 as
only one spectral frame is returned in each acquisition.

miraacq_GetFrameBands

Get the number of spectral bands of the data returned by the sensor

m raacq_Get FrameBands(meker nel * pma

Input:
¢ Runtime environment pointer

Output: Number of spectral bands if > 0 or an error code if <0

After the acquisition is successfully initialized by m raacq_I niti al i zeAcqui si ti on this function
returns the number of spectral bands returned in each acquisition step

miraacq_GetFrameDataType
Get the data type of the acquired image

m raacq_GCet FraneDat aType(maker nel * pma

Input:

¢ Runtime environment pointer
Output: Integer denoting the data type
ACQ DATATYPE_UNKNOVWN O

ACQ DATATYPE Ul NT16 1

ACQ DATATYPE FLOAT 2

ACQ DATATYPE_UI NT8 3

After the acquisition is successfully initialized by mi raacqg_I ni ti al i zeAcqui si ti on this function
returns the data type of content returned in acquisition.

miraacq_GetFrameDatalLayout

Get the data layout of the acquired image

m raacq_Get FraneDat aLayout (naker nel * pra

Input:
¢ Runtime environment pointer

Output: Integer denoting the data layout in memory

ACQ DATALAYQUT BI P 1 /* spectrum by-spectrum (di mensi ons: bands-w dt h-
hei ght) */

ACQ DATALAYQUT BI L 2 [* frame-by-frane (dinmensions: w dth-bands-hei ght)
*/

ACQ DATALAYQUT BSQ 3 /* spatial frame by frane (dinmensions: w dth-height-

170/191

bands) */

After the acquisition is successfully initialized by m raacq_I niti al i zeAcqui si ti on this function
returns the data layout of image returned in acquisition.

For line-scans, typical layout is BIL where all pixels (width) and all bands are returned each time. Spectral
cube is created by collating multiple such spectral frames, each with unit height.

For snapshot systems that perform band scanning, each band as appended internally. This results in BSQ
data layout (width x height x bands).

For some snapshot systems, the data is already reorganized into BIP layout where the spectral data of
each pixel is located next to each other in memory (bands x width x height).

miraacq_CanReturnWavelengths

Check if the device can return the wavelength information for each spectral band

m r aacq_CanRet ur n\Vavel engt hs(maker nel * pnma

Input:
¢ Runtime environment pointer

Output: 1 if the device can return wavelength info per band and 0 otherwise

After the acquisition is successfully initialized by m raacq_I niti al i zeAcqui si ti on this function
returns information if the device can provide wavelength information per spectral band.

miraacq_GetFrameWavelength

Return wavelength in nanometers for a specific spectral band

m raacq_Get FraneWavel engt h(neker nel * pmma, bandl nd, * pWavel ength

Input:

¢ Runtime environment pointer

¢ bandInd - integer index of a spectral band (zero-based i.e. 0.. number of bands -1)

¢ pWavelength- pointer to a double-precision value (to output the wavelength value in nanometers)

Output: Result: MIRA _OK or error code

After the acquisition is successfully initialized by mi raacqg_I ni ti al i zeAcqui si ti on this function
allows one to iterate over all spectral bands and retrieve the respective wavelength information.

miraacq_SetResamplingWavelengthCount

Defines how many output wavelengths will be provided

m r aacq_Set Resanpl i ng\Wavel engt hCount (maker nel * pna, count

Input:
¢ Runtime environment pointer
¢ Integer: Number of output wavelengths after resampling

Output: Result code (MIRA_OK or error)

This function starts the resampling step. By resampling, we refer to spectral resampling or interpolation.

The user may specify output wavelength list shared by all devices. This function initiates the procedure to
define resampling by specifying how many outputs wavelengths will be provided. It should be followed by
m raacq_Set Resanpl i ng\Wavel engt h calls to provide individual wavelength values in nanometers.

miraacq_SetResamplingWavelength

Defines output wavelength value

m raacq_Set Resanpl i ng\Wavel engt h(naker nel * pma, bandl nd,
wavel engt h

Input:

¢ Runtime environment pointer

¢ Integer: Index of an output band for which we're setting the wavelength value
¢ Double: Wavelength value in nm

Output: Result code (MIRA_OK or error)

This function specifies wavelength values for desired output bands. The band indices are zero based: O ..
count -1, where the count is defined using m raacq_Set Resanpl i ng\Wavel engt hCount function.
The wavelength values are provided in nanometers.

In order to use spectral resampling, the sensor needs to be calibrated, i.e. it needs to provide the mapping
of spectral bands (pixels) to wavelengths.

Wavelength values, provided by this function, must also lay within the range of device wavelengths. This is
because spectal interpolation not extrapolation is adopted.

miraacq_SetResampling

Enables or disables resampling

m raacq_Set Resanpl i ng(makernel * pma, enabl e

Input:
¢ Runtime environment pointer
¢ Integer: 1 to enable or O to disable resampling

Output: Result code (MIRA_OK or error)
This function enables or disables spectral resampling. The output wavelengths need to be specified using

nm raacq_Set Resanpl i ng\Wavel engt hCount and ni raacq_Set Resanpl i ngWavel engt h
functions.

miraacq_StartAcquisition

Starts the acquisition
m raacq_Start Acqui sition(makernel * pma)

Input:
¢ Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
m raacqg_Start Acqui sition starts the acquisition process. The acquisition needs to be succesfully
initialized using m raacqg_l nitializeAcqui sition.

miraacq_GetFrame

Return new spectral data from sensor

m raacq_Get Frame(maker nel * pma, * pBuf, * pFranel D, timeQut);

Input:

¢ Runtime environment pointer

¢ Pointer to external buffer with raw spectral frame data

¢ Pointer to size_t value to store frame id of the returned frame
¢ Integer timeout

Output: Result code (MIRA_OK or error)

Description:

m raacq_Get Franme returns new data from spectral camera. The function can be only called after
acquisition is initialized and started. The provided buffer pointed to by pBuf needs to hold at least number of
bytes returned by i r aacq_Get Fr aneSi ze. The content of pFramelD is set to the ID of a returned
frame. On systems that support internal framelD, this value can be used for dropped frame detection.

MV.C VNIR:
The timeout value needs to be non-zero.

miraacq_StopAcquisition
Starts the acquisition

m ra_St opAcqui sition(nrkernel* pnr)

Input:
¢ Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
m ra_St opAcqui sition stops the acquisition process. Statistics on number of processed frames,
speed per frame and frame-rate is available via a subsequent mi ra_Get Err or Msg call.

Example:
Average alg time: 2.79676 ns/frame (357.557 fps), processed 1500 franes, first
500 ski pped for warm up.

miraacq_SetExposure

Sets the exposure time

m raacq_Set Exposur e(nakernel * pma, val

Input:
¢ Runtime environment pointer
¢ Double: Exposure value in ms

Output: Result code (MIRA_OK or error)
This function sets the exposure (integration time) in miliseconds. It can be used only after

m raacqg_lnitializeAcquisition.Itmay be using during running acquisition (after
m raacq_Start Acqui sition).

miraacq_GetExposure

Gets the exposure time

m raacq_Get Exposur e(nakernel * pma, * pVal

Input:
¢ Runtime environment pointer
¢ pointer to double: Output value

Output: Result code (MIRA_OK or error)
This function gets the current exposure (integration time) value in miliseconds. It can be used only after

m raacq_InitializeAcquisition. It may be using during running acquisition (after
m raacq_St art Acqui sition).

miraacq_SetFrameRate

Sets the frame rate in frames per second

nm raacq_Set FraneRat e(naker nel * pmg, val

Input:
¢ Runtime environment pointer
¢ Double: Frame rate value in ms

Output: Result code (MIRA_OK or error)
This function sets the frame raw (integration time) in frames per second. It can be used only after

m raacq_InitializeAcquisition. It may be using during running acquisition (after
m raacq_St art Acqui sition).

miraacq_GetFrameRate

Gets the exposure time

nm raacq_Get FraneRat e(naker nel * pma, * pVal

Input:
¢ Runtime environment pointer
¢ pointer to double: Output value

Output: Result code (MIRA_OK or error)
This function gets the current frame rate value in frames per second. It can be used only after

m raacq_InitializeAcquisition. It maybe using during running acquisition (after
m raacq_St art Acqui sition).

miraacq_Release

Release runtime internal session and clean resources.
m raacq_Rel ease(maker nel * prma)

Input:
¢ Runtime environment pointer

Output: None

Description:
m raacq_Rel ease ends the session and releases all memory allocated by the runtime.

perClass Mira Documentation

perClass Mira Runtime API

Initialization and cleanup

o mra_lnit

¢ mira_Rel ease

Error handling

o mira_CetErrorCode

o nmira_GetErrorMg
Computational device selection

o nira_RefreshDevicelLi st
¢ mira_CetDevi ceCount
o nira_GetDeviceNane

e mira_SetDevice
Loading model

¢ mira_LoadModel

¢ nmira_LoadCorrection
Data processing - querrying input data parameters

o nmra_GetlnputWdth

¢ mra_SetlnputWdth

o nira_Getlnput Hei ght

e mra_GCetlnputBands

o nira_GetlnputDataType

¢ mira_Cetlnput Dat aLayout
Data processing

¢ mira_Set Segnentation
o nmira_StartAcquisition
¢ mira_ProcessFrane

¢ nira_ProcessCube

e mra_StopAcquisition
¢ nra_Savel mage

Processing results
Pixel classification

¢ mira_CetFraneDecisions
o nmira_Get DecCount
¢ mira_Cet DecNane

o nira_Get DecCol or
Object segmentation

o nira_Get MaskType

o mra_Cet Obj Count

o nmra_Get ObjDatalnt

o mira_Cet Obj Dat aCl assSi ze
¢ nmra_Get Obj Datad assFrac
¢ mra_SetMnCbjSize
Regression

¢ mira_Cet RegVar Count

o nmira_GCet RegVar Nane

¢ mira_Cet Obj Dat aRegQut put
o nmira_Get FraneRegQut put Var

175/191

mira_Init

Initialize runtime environment.

ntrkernel* mra_Init(const * pat h)

Input: Path to a directory with a license file
Output: Runtime environment pointer

Description:

The mira_Init function initializes runtime environment. It returns a pointer used for any other API function
that interacts with the runtime.

The input is a path to a directory where a license file with .lic extension can be found. Pass "." for the
current directory.

After initialization, m ra_Get Err or Msg provides welcome string listing software version or error
message.

Example:
nr ker nel * =mira_lnit(".");
printf("Init: %", mra_GetErrorMg());
i f(==NULL) return;

Error codes

-101 Passing NULL pointer

-102 mira_GetDeviceName: Device index out of bounds
-103 mira_StartAcquisition: Project not loaded

-104 mira_StartAcquisition: Classifier model not loaded

-110 mira_LoadModel: Error loading model from file
-111 mira_LoadModel: Wrong file format

-112 mira_LoadModel: Internal error when loading
-113 mira_LoadModel: File cannot be opened

-120 mira_savelmage: Label image does not exist

-130 mira_LoadCorrection: Loading meta-data from the correction scan failed.

-131 mira_LoadCorrection: Error loading dark reference data

-132 mira_LoadCorrection: Dark and White reference images have different width or band count.
-134 mira_LoadCorrection: Both dark and white reference scans need to be loaded.

-135 mira_LoadCorrection: Reference file not present

-136 mira_LoadCorrection: Unsupported data layout or data type

-140 Error switching to the computation device

-141 mira_RefreshDeviceList: Error setting CUDA backend

-142 mira_RefreshDevicelList: Error setting OpenCL backend

-143 mira_RefreshDeviceList: listNVIDIA and listOpenCL must be specified as 0 or 1 values

-150 Feature does not exist
-151 Wrong feature type requested

-160 Max number of objects per frame reached

-161 mira_GetObjData*: Object index out of bounds

-162 mira_GetObjData*: Class index out of bounds (0..9)

-163 mira_GetObjDataClassSize: Segmentation not set to required 'All foreground' mode.
-164 mira_GetMaskType: Object segmetation not defined

-170 mira_StartAcquisition: Acquisition already running

-171 mira_StopAcquisition: Acquisition not running
-172 mira_StartAcquisition: Object segmentation cannot proceed

-180 mira_GetDecName: Decision index out of bounds
-190 mira_SetForegroundClass: Foreground class index out of bounds

-201 mira_ProcessCube: Line-scan project type cannot process cubes
-202 mira_StartAcquisition: Label image dimension mismatch

-203 mira_ProcessCube: Missing image geometry description
-204 mira_ProcessFrame: Line-scan processing requires BIL layout

-205 mira_GetinputDatalLayout: Undefined data layout
-206 mira_GetlnputDataType: Undefined data type

-207 mira_ProcessCube: Unsupported project type

-208 mira_ProcessFrame: Unsupported data type
-208 mira_ProcessCube: Unsupported data type or data layout

mira_GetVersion

Return runtime version

const * mra_GetVersion()
Input: None

Output: Version string

Description:
m ra_Get Ver si on returns version string together with the release date. For example "2.1 26-mar-2020".

mira_GetErrorCode

Return error code

m ra_Get Error Msg(nrkernel* pnr)
Input: Runtime environment pointer
Output: Error code

Description:
m ra_Get Error Code returns error code. For a specific string description, ni ra_ Get Error Msg

mira_GetErrorMsg

Returns error message.

const * mra_Get ErrorMsg(nrkernel* pnr)
Input: Runtime environment pointer

Output: Error message string

Description:

m ra_Get Error Msg returns error message as string. For a specific error code, use
m ra_Cet Error Code

perClass Mira Documentation

mira_RefreshDevicelList

Fills the list of computational devices available
m raacq_ScanDevi ces(makernel *pna)

Input:
¢ Runtime environment pointer pma

Output: Result: MIRA_OK or error code

Description:

m raacq_ScanDevi ces searches for acquisition devices available. After calling

m raacq_ScanDevi ces, one can get device count using m r aacq_Get Devi ceCount and names with
m raacq_Get Devi ceNane.

Example:
M RAACQ CHECK(m raacq_ScanDevi ces(pnma));
const int devCount=m raacq_Cet Devi ceCount (pra) ;
printf("\n%l devices:\n",devCount);
for(int i=0;i<devCount;i++) {
printf("% : %\n",i, mraacq_GCetDeviceNane(pm,i));
}

The M RAACQ_CHECK macro checks the output result. If error occurs, the program flow is terminated. See
miraacqg.h definition.

mira_GetDeviceCount

Returns the number of GPU devices found

m ra_Get Devi ceCount (nr kernel * pnr)
Input: Runtime environment pointer
Output: Number of devices found

Description:
m ra_Get Devi ceCount returns the number of devices found by mi ra_Ref r eshDevi celi st.

mira_GetDeviceName

Returns the name of a specific computational device

const * mra_Get Devi ceNane(nrkernel * pnr, devi cel nd)

Input:
¢ Runtime environment pointer
¢ Device index

Output: String name of a device
Description:

m ra_Get Devi ceNane returns the name for a specific device. Before using m r a_Get Devi ceNamne or
m ra Get Devi ceCount , the device list needs to be constructed by ni ra Ref r eshDevi celLi st.

mira_SetDevice

Sets specific computational device

m ra_Set Devi ce(nrkernel * pnr, devi cel nd)

178/191

Input:
¢ Runtime environment pointer
¢ Device index

Output: Result code (MIRA_OK or error)
Description:

m ra_Set Devi ce sets specific computational device. The device list needs to be constructed by
m ra RefreshDeviceli st.

Example:
M RA CHECK(m ra_RefreshDevi celLi st (,1,0))
const =m ra_GCet Devi ceCount ();
printf("\n%l devices:\n",);
for(=0; 1 < pi+) |
printf("% : %\n",i, mra_CetDeviceNanme(v 1))
}
=at oi ([1]);
M RA CHECK(m ra_Set Devi ce(,));
printf("Device selected: % ' %
s'\n", , M ra_ Get Devi ceNane(,));

The M RA_CHECK macro checks the output result. If error occurs, the program flow is terminated. See
perclass_mira.h definition.

mira_LoadModel
Loads classification model

m ra_LoadModel (nrkernel *pmr, const * fil enane)

Input:
¢ Runtime environment pointer
¢ Filename (.mira project file)

Output: Result code (MIRA_OK or error)
Description:

m ra_LoadModel loads a classification model from .mira project file.

mira_LoadCorrection

Loads white and dark correction data from disk

m ra_LoadCorrection(nrkernel *pmr, const * di rname, const
*scannane) ;

Input:

¢ Runtime environment pointer

¢ Dirname - a name of a directory containing a scan directory
¢ Scanname - a name of a scan directory

Output: Result code (MIRA_OK or error)
Description:
For Headwall project type:

Correction information is assumed to be in whiteReference and darkReference scans. To load references,
pass the path to a directory containing the whiteReference and darkReference ENVI scans. The third

argument is NULL.

Header files must have .hdr extensions. Both spectral cubes can have arbitrary extensions. Reference
cubes must be in BIL data layout. Both uintl6 and float data types are supported.

Example:
mra_LoadCorrection(pnr,"path to dir_with_references", NULL);

In this way, both reference files are loaded at the same time.

For Specim project type:

m ra_LoadCorrection loads dark and white correction information from di r nane directory. The
assumption is the a scanname is a hame of a directory inside the dirname directory and that it conforms
Specim LUMO scanner directory structure. This means that inside scanname directory is a capture sub-
directory. Inside the capture sub-dir, the following files are needed:

¢ WHITEREF_scanname.hdr
¢ WHITEREF_scanname.raw
¢ DARKREF_scanname.hdr
¢ DARKREF_scanname.raw
¢ scanname.hdr

The scanname.hdr defines wavelengths, band cound and pixel count of a scan. Note, that the
scanname.raw is not needed when loading correction.

All ENVI cubes are supposed to be in BIL data layout and use uintl6 data type.

If mi ra_LoadCorrection is not called, the assumption is that the input data stream is already
reflectance corrected and in float data type. This can be checked using mira_GetlnputDataType.

mira_SetMinObjSize
Set the minimum object size for segmentation

mra_Set M nCbj Si ze(nrkernel *pnr, m nSi ze) ;

Input:
¢ Runtime environment pointer
¢ minSize - minimum object size in pixels

Output: Result code (MIRA_OK or error)
Description:

mra_Set M nQbj Si ze sets the minimum object size in pixels. Objects with size larger or equal than
minSize are reported.

mira_SetSegmentation

Set the minimum object size for segmentation
m ra_Set Segnment ati on(nr kernel *pnr, enabl e) ;

Input:
¢ Runtime environment pointer
¢ enable - flag is to enable (1) or disable (0) object segmenttion

Output: Result code (MIRA_OK or error)

Description:
m ra_Set Segnent ati on enables or disables object segmentation. For all type of projects it is disabled

by default (Note: before 2.3, it was enabled by default for line-scan projects).. Use before starting the
acquisition. Note, that the model needs to have some class or classes flagged as foreground to perform
segmentation.

mira_GetInputWidth

Get the expected width of the input image stream

m ra_Get | nput Wdt h(nrkernel * pnr

Input:
¢ Runtime environment pointer

Output: Input image width if > 0 or an error code if <0

The image width in the line scan use case is the number of pixels of one line i.e. the pixels across the belt.

mira_SetInputWidth

Set the width of the input image stream

m ra_Set | nput Wdt h(nt kernel * pnr, wi dt h

Input:
¢ Runtime environment pointer
¢ Input width of the data stream

Output: Result code (MIRA_OK or error)

Input width of the data stream may be set manually. The width overrules the setting in the loaded project.

mira_GetInputHeight

Get the expected height of the input image stream

m ra_Get | nput Hei ght (nt kernel * pnr

Input:
¢ Runtime environment pointer

Output: Input image height if > 0 or an error code if <0

This call is only meaningful in snapshot use-case where entire spectral cube is to be processed with
mira_ProcessCube function.

mira_GetInputBands

Get the expected number of spectral bands of the input image stream

m ra_Get | nput Bands(nr kernel * pnr

Input:
¢ Runtime environment pointer

Output: Input band count if > 0 or an error code if <0

This call returns the number of spectral bands expected in each pixel.

mira_GetInputDataType

Get the expected data type in the input image stream

m ra_Get | nput Dat aType(nr kernel * pnr

Input:
¢ Runtime environment pointer

Output: Input data type if >= 0 or an error code if <0

MIRA_DATATYPE_UNKNOWN 0
MIRA_DATATYPE_UINT16 1
MIRA_DATATYPE_FLOAT 2
MIRA_DATATYPE_UINT8 3

This call returns the data type expected in the input image stream based on the loaded model.

mira_GetInputDatalayout

Get the expected data layout of the input image stream

m ra_Get | nput Dat aLayout (nt ker nel * pnr

Input:
¢ Runtime environment pointer

Output: Input data layout if >= 0 or an error code if <0

MIRA_DATALAYOUT_UNKNOWN 0

MIRA_DATALAYOUT_BIP 1 [* spectrum-by-spectrum (dimensions: bands-width-height) */
MIRA_DATALAYOUT_BIL 2 [* frame-by-frame (dimensions: width-bands-height) */

MIRA DATALAYOUT_BSQ 3 /* spatial frame by frame (dimensions: width-height-bands) */

This call returns the data layout expected in the input image stream based on the loaded model.

mira_GetMaskType

Get the mask type of the loaded object segmentation model

m ra_Get MaskType(nr kernel * pnr

Input:
¢ Runtime environment pointer

Output: Input data layout if >= 0 or an error code if <0

MIRA_MASK_EACH_FOREGROUND 1
MIRA_MASK_ALL_FOREGROUND 2

This call returns the mask type for the loaded model. The 'each-foreground’ type is used for single material
per object situations (object detection). The 'all-foreground' mask is used for complex objects composed of
multiple materials where the union of classes defines object mask (object classification). An example: A
potato can have healthy flesh or rotten defect - these are the trained classes. The segmentation mask is set
of 'all-foreground' and, therefore, entire piece of potato is segmented out. For each object, perClass Mira
Runtime provides pixel count for each foreground class. This allows object sorting based on composition.

mira_StartAcquisition

Starts the acquisition
mra_StartAcquisition(nrkernel* pnr)

Input:
¢ Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:

mra_StartAcqui sition starts the acquisition process. Computational device must be defined, model
loaded and correction information defined.

Individual frames can then be processed using m r a_Pr ocessFr ane

mira_ProcessFrame

Process a single individual raw spectral frame from a line-scan camera

m ra_ProcessFrane(nrkernel * pnr, * pData);

Input:
¢ Runtime environment pointer
¢ Pointer to external buffer with raw spectral frame data

Output: Result code (MIRA_OK or error)

Description:

m ra_ProcessFrane passes data of a raw spectral frame from a line-scan camera. Acquisition process
need to be running (started using m ra_St art Acqui si ti on).

The input data stream from a line scan camera is expected to be in BIL layout (pixels on the spatial line
times spectral bands). The expected geometry and data type are defined by the loaded solution. This
information can be queried by the mi ra_Get | nput Wdt h, m ra_GCet | nput Bands, and
mra_Getlnput Dat aType.

After a frame is processed, per-pixel decisions may be read out using mi r a_Get Fr aneDeci si ons or
object information extracted using m ra_Get Cbj * functions.

mira_ProcessCube

Process a single spectral cube

m ra_ProcessCube(nrkernel * pnr, * pData);

Input:
¢ Runtime environment pointer
¢ Pointer to external buffer with raw spectral frame data

Output: Result code (MIRA_OK or error)

Description:

m ra_ProcessCube passes data of a entire spectral cube. Acquisition process need to be running
(started using m ra_St art Acqui si ti on).

The expected geometry and data type are defined by the loaded solution. This information can be queried
by the m ra_Get | nput Hei ght, m ra_Get | nput Wdt h, nmira_Get | nput Bands,

m ra_Get | nput Dat aLayout and mira_Get | nput Dat aType.

After a cube is processed, per-pixel decisions may be read out using m r a_CGet Fr aneDeci si ons or
object information extracted using m ra_Get Obj * functions.

mira_StopAcquisition

Starts the acquisition
m ra_St opAcqui sition(nrkernel* pnr)

Input:
¢ Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
m ra_St opAcqui sition stops the acquisition process. Statistics on number of processed frames,
speed per frame and frame-rate is available via a subsequent mi ra_Get Err or Msg call.

Example:
Average alg time: 2.79676 ns/frame (357.557 fps), processed 1500 franes, first
500 ski pped for warm up.

mira_GetFrameDecisions

Returns a pointer to pixel decisions on the last processed line
const *m ra_Get FraneDeci si ons(nrkernel * pnr);

Input:
¢ Runtime environment pointer

Output: Pointer to decisions on the last processed line
Description:

m ra_Get FranmeDeci si ons returns pointer to decisions at the last processed line. The values are zero-
based indices. Class name corresponding to each index can be obtained using mi r a_CGet DecNane

mira_GetDecCount

Returns the number of decisions provided by the classifier

m ra_Get DecCount (nr kernel * pnr);

Input:
¢ Runtime environment pointer

Output: Number of decisions provided by the classifier
Description:
m ra_Get DecCount returns the number of decisions provided by the classifier. The decision index,

returned for each pixel by mi r a_Get Fr aneDeci si ons is a value smaller than decision count (zero-
based indexing).

mira_GetRegVarCount

Returns the number of regression variables available by the regression model
m ra_Get RegVar Count (nr kernel * pnr);

Input:
¢ Runtime environment pointer

Output: Number of regression variables provided by the project

Description:
m ra_Get RegVar Count returns the number of regression variables provided by the project. The
m ra_Get RegVar Nane function can be then used to obtain specific variable names.

If the project does not contain any trained regression model, zero is returned. Therefore, this function can
be used to check whether regression modeling is enabled in the project.

mira_GetRegVarName

Returns regression variable name given its index
const * mra_GCet RegVar Nanme(nr kernel * pnr, regVarl nd) ;

Input:
¢ Runtime environment pointer
¢ Regression variable index (0 to the count returned by mira_GetRegVarCount - 1)

Output: String name of a regression variable

Description:
m ra_Get RegVar Nane returns the name for a specific regression variable.

Example:

=m ra_GCet RegVar Count ();
i >0) {
/* regression variables */
printf("\nregression vars:\n");

for(=0; 1 < pi+) |
printf("% : %\n",i,mra_Get RegVar Nane(v 1))
}
}
Output:
regression vars:
0 : brix
1: acidity

mira_GetObjDataRegOutput

Read information on segmented out objects

m ra_Get Obj Dat aRegQut put (nr kernel * pnr, entrylnd, const **
ppQbj Dat a) ;

Input:

¢ Runtime environment pointer

¢ entrylD - zero-based index of an object

¢ ppObjData - pointer to a pointer to a table with regression results per object (floating point_

Output: Result (MIRA_OK or error)

Description:

m ra_Get Obj Dat aRegCQut put provides per-object regression output. The second parameter ent ryl nd
is a zero-based object index (0..number of objects found -1). The third parameter ppCbj Dat a represents
regression values for a given object. The example below illustrates that we declare a pointer to float called
pObjData and initialize its value to NULL. In an acquisition loop, after processing a frame, if an object is
found, we call m r a_Get Obj Dat al nt in a for loop extracting object information.

When we wish to access regression information for a given object, we use the

m ra_Get Obj Dat aRegQut put function. We pass the address of the pObjData to the

perClass Mira Documentation

m ra_Get Obj Dat al nt, not the pointer itself. The actual regression value can be accessed using
[v], wherev isthe zero-based regression variable index.
No memory allocation is needed on the side of user code.

Example:
:0’
=m ra_GCet RegVar Count ();
* =NULL;
whi | e(<) |
=m ra_ProcessFramg(,);
=m ra_Cet Cbj Count ();
i >0) {
for(=0; 1< pi++) {
/* we pass address of a pointer to receive object table
al l ocated by the runtine */
m ra_Get Obj Dat al nt (v, &);
/* pOojData all ows us to access object details */
printf("\n obj% : %,d ",
[MRA OBJECT_I D],
[M RA_OBJECT_FRAME], /* along the belt */
[M RA OBJECT_POS]); /* across the belt */
i f(>0 && mra_Cet Obj Dat aRegQut put (v, &)
=M RA_ K) {
printf("\t reg:");
for(=0; v< s vtt) |
printf(" 98.3f ", [v1);
}

}

} /* end of for |oop */
} /'* end of if objects */
} /* end of frame acquisiion */

mira_GetFrameRegOutputVar

Returns a pointer to pixel decisions on the last processed line

const *m ra_Get FraneRegQut put Var (nr ker nel * pnr, var | nd,
maskBackgr ound, maskVal) ;
Input:

¢ Runtime environment pointer

® regression variable index

¢ flag specifying if background should be masked

¢ masking value put on background pixels (if maskBackground==1)

Output: Pointer to per-pixel floating point regression value for the frame

Description:
m ra_Get FraneRegQut put Var returns pointer to floating point regression values at the last processed

186/ 191

line. The pointer can be dereferenced for each pixel of the processed line (from 0 to InputDataWidth-1
inclusive). The output is provided for a regression variable defined by the index given in the second
parameter). The third parameter specifies if background pixels should be masked (mackBackground==1)
or not (maskBackground==0). If masking is requested, the last paramer specifies floating point value
copied into all background pixels. The masking procedure simplifies post-processing of the per-pixel
regression output.

mira_GetDecName

Returns decision (class) hame given decision index

const * mra_Get DecName(nr kernel * pnr, decl nd) ;

Input:
¢ Runtime environment pointer
¢ Decision index (0 to number of decisions - 1)

Output: String name of a class (decision)

Description:
m ra_Get DecNane returns the name for a specific decision index.

Example:
printf("classifier decisions:\n");
const =m ra_GCet DecCount ();
for(=0; 1 < i) |
printf("% : %\n",i,nra_Get DecNange(V1))
}
Output:

cl assifier decisions:
0 : background

1 : product

2 . foreign object

mira_GetDecColor

Returns R,G,B color of a given decision

const * mra_Get DecCol or (nr kernel * pnr, decl nd, *
R * G * B);
Input:

¢ Runtime environment pointer
¢ Decision index (0 to number of decisions - 1)
¢ pointer to red, green and blue color

Output: String name of a class (decision)

Description:
m ra_Get DecCol or returns R,G, and B colors for a given decision

mira_GetObjCount

Returns the number of objects found after processing a frame
m ra_Get Qbj Count (nrkernel * pnr);

Input:
¢ Runtime environment pointer

Output: Number of objects found after processing a given frame

Description:

m ra_Get Qbj Count returns the number of objects found after processing a given frame. If non-zero, the
object information can be read using mi r a_Get Cbj Dat a* funcitons, see this example.

Note, that the object-specific information is replaced after next frame processing.

mira_GetObjDatalnt

Read information on segmented out objects
m ra_Get Obj Dat al nt (nr kernel * pnr, entryl nd, ** ppQhj Dat a) ;

Input:

¢ Runtime environment pointer

¢ entrylD - zero-based index of an object

¢ ppObjData - pointer to a pointer to a table with object information

Output: Result (MIRA_OK or error)

Description:

m ra_Get Obj Dat al nt returns details on a specific object found. The first parameter is a zero-based
object index (0..number of objects found -1). The second parameter represents an object table. The
example below illustrates that we declare a pointer to int called pObjData and initialize its value to NULL. In
an acquisition loop, after processing a frame, if an object is found, we call m r a_Get Cbj Dat al nt in a for
loop extracting object information. Note, that we pass address of the pObjData to the

mra_Get Obj Dat al nt .

The object table:

M RA OBJECT_ID 0 Unique object identifier
M RA_OBJECT_FRAVE 1 Frame index for the object centroid
M RA_OBJECT_PCS 2 Position of the object centroid across the belt
M RA OBJECT_M NFRAME 3 Bounding box coordinates:
M RA_OBJECT_NMAXFRAME 4
M RA_OBJECT_M NCCOL 5
M RA_OBJECT_MAXCOL 6
M RA _OBJECT_SI ZE 7 Object size in pixels
M RA_OBJECT_CLASS 8 Object class index
Example:
:0’
* =NULL; /* pointer to object table data */
whi | e(<) {
m ra_ProcessFrang(,);

=m ra_GCet Gbj Count ();
i >0) {
for(=0; 1 < i) |
/* we pass address of a pointer to receive object table
al l ocated by the runtine */

m r a_Get Obj Dat al nt (VI, &)

/* pOojData all ows us to access object details */
printf("\n obj% : %,d ",

[MRA OBJECT_I D],

[M RA_OBJECT_FRAME], /* along the belt */

[M RA OBJECT_POS]); /* across the belt */
} /* end of for |oop */
} /'* end of if objects */
} /* end of frame acquisiion */

mira_GetObjDataClassSize

For complex object segmentation, returns number of class pixels wihtin the obejct
mra_Get Obj Dat adl assSi ze(nr kernel * pnr, entryl nd, cl assl nd);

Input:

¢ Runtime environment pointer

¢ entrylnd - Object index (zero-based)
¢ classInd - Class index (zero-based)

Output: Number of pixels of specific class within specific object or error

Description:

m ra_Get Obj Dat aCl assSi ze returns the number of pixels of specific class within an object. This
function is applicable when object segmentation mask is defined as "all foregound" i.e. when complex
objects are segmented.

mira_GetObjDataClassFrac

For complex object segmentation, returns the fraction of class pixels wihtin the obejct

m ra_Get Obj Dat aCl assFrac(nrkernel * pnr, entryl nd, cl assl nd)

Input:

¢ Runtime environment pointer

¢ entrylnd - Object index (zero-based)
¢ classInd - Class index (zero-based)

Output: Fraction (0.0 to 1.0) inclusive of pixels of specific class within specific object or error code

Description:

m ra_Get Obj Dat aCl assFrac returns the fraction of specific class within an object. This function is
applicable when object segmentation mask is defined as "all foregound" i.e. when complex objects are
segmented.

If error occurs the negative error code value is returned.

mira_SaveImage

Save internal segmentation buffer as PNG image

m ra_Savel mage(nr kernel * pnr, const * fil enane)
Input:
¢ Runtime environment pointer
¢ Filename

Output: Result (MIRA_OK or error)

Description:
m ra_Savel mage saves internal segmentation buffer into a PNG file. It is intended as a quick
visualization of what the classifier can "see" in a deployed system.

perClass Mira Documentation

Segmented objects are highligted by white crosses.

Example:
M RA_CHECK(mira_StopAcquisition(pnr));
printf("\n %", mra_GetErrorMg(pnr));
/* W can save the content of the internal buffer. */
mra_Savel mage(pnr, "out.png");
nmra_Rel ease(pnr);

Output: Content of out.png file

mira_Release

Release runtime internal session and clean resources.

vol d mra_Rel ease(nrkernel * pnr)

Input:
¢ Runtime environment pointer

Output: None

Description:
m ra_Rel ease ends the session and releases all memory allocated by the runtime.

Troubleshooting

If you experience unexpected behaviour or crashes, please contact support@perclass.com

Please provide:
¢ Detail on your license (dongle number or activation key)
0 Dongle:

= USB dongle is enabled using license file stored in C:
\Users\USERNAME\AppData\Roaming\perClassBV directory. The license file filename

190/191

contains dongle number Dxxxx
O Activation key:

= Activation key is listed in the mira.ini file in C:
\Users\USERNAME\AppData\Roaming\perClassBV

¢ Specific version of perClass Mira you're using
0 Please make sure you're running the latest available version of the software
0 You can check availability of software updates using Help / Check for updates command

¢ Description of behaviour leading to a crash. This helps us to repeat and fix the problem.

¢ |f the behaviour leading to an issue cannot be repeated, please enable logging, use the software until
the crash occurs and send us the mira.log file to support@perclass.com

How to enable logging

Logging stores information on software internal process in a mira.log text file. This may help us to
understand and fix issues.

In order to enable logging:
¢ Close any running instance of perClass Mira
¢ Open mira.ini file located in C:\Users\USERNAME\AppData\Roaming\perClassBV

¢ Enable logging by settig
logMessagesToFile=true

e Start a new perClass Mira instance. The Output window will list in yellow, that logging is enabled

The log is stored in mira.log file in the same directory as above.

TIP: You may quickly open the license directory by Help / Open license directory command. However,
please note that when any instance of perClass Mira closes, it saves its settings back to the mira.ini file
overwriting its content. Therefore, you may loose settings edited externally. That is why we advice to close
all instances before editing the file.

TIP: Disable logging when not needed. Keeping it enabled will incurr a performance penalty

	Introduction
	Getting started
	perClass product structure
	Installation and license activation
	Activation

	Build classifier on existing scans
	Creating a project
	Adding images
	Spectral cube visualization
	Training a clasifier
	Switching between labels and decisions
	Improving the classifier
	Improving the labeling
	Adding new classes

	Acquire data and interpret
	Creating a project for acquisition
	Connecting to the stage
	Connecting to the camera
	Recording references
	Defining a scan area
	Recording a scan
	Building a classifier and applying to live data

	User guide
	New project
	Objects
	Object segmentation
	Object separation
	Object classification

	Regions
	Region annotation

	Confusion matrix
	Test set confusion matrix
	Current image confusion matrix
	Optimizing classifier performance
	Cost sensitive optimization
	Performance contraints

	Object confusion matrix
	Detailed information on object matching
	Copying confusion matrix

	Visualization (spectral indices)
	Adjusting spectral features
	Scaling spectral features
	Applying feature extraction to foreground
	Colormaps

	Feature extraction (exporting)
	Extracting multiple features
	Extracting from region grid
	Defining region extraction template
	Exporting into XML

	Regression
	Step 1: Pixel classification
	Step 2: Object segmentation
	Step 3: Object annotation
	Step 4: Regression modeling
	Step 5: Defining test data set
	Step 6: Improving regression model
	Regression plot
	Performance statistics
	Outlier plot
	Error plot
	Regression using subset of bands
	Regressor and classifier band subsets

	Preprocessing

	Additional regression tools
	Model search versus retraining
	Applying to new images
	Pixel visualization of regression output

	Spectral plot
	Class-specific display
	Display range and scaling
	Band selection
	Band subsets used by models

	Frame widget
	Stage
	Stage commands

	Camera
	Camera controls

	Recording panel
	Recommended screen setup
	Setting scan name

	Exporting
	Exporting per-image results
	Exporting per-object results
	Exporting visualizations
	Exporting visualizations as float images
	Exporting cubes
	Exporting regions
	Importing regions

	Exporting label images

	Model testing
	Flagging images for testing
	Cross-validation
	Cross-validation over images
	Cross-validation over replicas
	Default action

	Reference
	Integration
	Example of acquisition from Camera API

	Release notes
	Application Server
	Enabling application server
	Communicating with the server
	Command list
	Example communication using Tcl

	perClass Stage
	Assembling instructions
	Disassembling instructions
	Supported cameras

	Supported spectral cameras
	Cubert
	Pleora eBUS
	Headwall
	Headwall MV.X
	Headwall MV.C NIR
	Headwall MV.C VNIR

	Resonon

	perClass Camera API
	miraacq_Init
	miraacq_GetVersion
	miraacq_GetAPIVersion
	miraacq_GetRecorderType
	miraacq_GetErrorCode
	miraacq_GetErrorMsg
	miraacq_ScanDevices
	miraacq_GetDeviceCount
	miraacq_GetDeviceName
	miraacq_OpenDevice
	miraacq_CloseDevice
	miraacq_DeviceIsSnapshot
	miraacq_InitializeAcquisition
	miraacq_GetFrameSize
	miraacq_GetFrameWidth
	miraacq_GetFrameHeight
	miraacq_GetFrameBands
	miraacq_GetFrameDataType
	miraacq_GetFrameDataLayout
	miraacq_CanReturnWavelengths
	miraacq_GetFrameWavelength
	miraacq_SetResamplingWavelengthCount
	miraacq_SetResamplingWavelength
	miraacq_SetResampling
	miraacq_StartAcquisition
	miraacq_GetFrame
	miraacq_StopAcquisition
	miraacq_SetExposure
	miraacq_GetExposure
	miraacq_SetFrameRate
	miraacq_GetFrameRate
	miraacq_Release

	perClass Mira Runtime API
	mira_Init
	Error codes
	mira_GetVersion
	mira_GetErrorCode
	mira_GetErrorMsg
	mira_RefreshDeviceList
	mira_GetDeviceCount
	mira_GetDeviceName
	mira_SetDevice
	mira_LoadModel
	mira_LoadCorrection
	mira_SetMinObjSize
	mira_SetSegmentation
	mira_GetInputWidth
	mira_SetInputWidth
	mira_GetInputHeight
	mira_GetInputBands
	mira_GetInputDataType
	mira_GetInputDataLayout
	mira_GetMaskType
	mira_StartAcquisition
	mira_ProcessFrame
	mira_ProcessCube
	mira_StopAcquisition
	mira_GetFrameDecisions
	mira_GetDecCount
	mira_GetRegVarCount
	mira_GetRegVarName
	mira_GetObjDataRegOutput
	mira_GetFrameRegOutputVar
	mira_GetDecName
	mira_GetDecColor
	mira_GetObjCount
	mira_GetObjDataInt
	mira_GetObjDataClassSize
	mira_GetObjDataClassFrac
	mira_SaveImage
	mira_Release

	Troubleshooting
	How to enable logging

