
Copyright © 2018-2024, perClass BV, All Rights Reserved.

perClass Mira 5.0
Documentation



perClass Mira 5.0 Documentation

2 / 211

Table of contents

Introduction ...........................................................................................................7
Getting started ...................................................................................................... 8

perClass product structure .................................................................................. 8
Installation and license activation ....................................................................... 8

Activation ....................................................................................................12
Build classifier on existing scans ....................................................................... 13

Creating a project ........................................................................................ 13
Adding images ............................................................................................. 14
Spectral cube visualization ........................................................................... 16
Training a clasifier ....................................................................................... 17
Switching between labels and decisions ........................................................ 20
Improving the classifier ................................................................................ 21

Improving the labeling ............................................................................. 21
Adding new classes .................................................................................. 23

Where to go next? ....................................................................................... 26
Acquire data and interpret ................................................................................ 26

Creating a project for acquisition .................................................................. 28
Connecting to the stage ............................................................................... 29
Connecting to the camera ............................................................................ 30
Recording references ................................................................................... 32
Defining a scan area .................................................................................... 34
Recording a scan ......................................................................................... 35
Building a classifier and applying to live data ................................................ 38

User guide ........................................................................................................... 41
New project .....................................................................................................41
Objects ............................................................................................................42

Object segmentation ....................................................................................43
Object separation ........................................................................................ 44
Object classification ..................................................................................... 46

Regions ........................................................................................................... 47
Region annotation ....................................................................................... 47

Confusion matrix .............................................................................................. 49
Test set confusion matrix ............................................................................. 51
Current image confusion matrix .................................................................... 54
Optimizing classifier performance ................................................................. 55

Cost sensitive optimization .......................................................................55
Performance contraints ............................................................................ 56

Object confusion matrix ....................................................................................60
Detailed information on object matching ....................................................... 62
Copying confusion matrix ............................................................................. 63

Visualization (spectral indices) ..........................................................................65
Adjusting spectral features ........................................................................... 67
Scaling spectral features .............................................................................. 69
Applying feature extraction to foreground ..................................................... 70
Colormaps ...................................................................................................71

Feature extraction (exporting) .......................................................................... 74
Extracting multiple features ..........................................................................77



perClass Mira 5.0 Documentation

3 / 211

Extracting from region grid ........................................................................... 79
Defining region extraction template .............................................................. 80
Exporting into XML .......................................................................................81

Regression .......................................................................................................81
Step 1: Pixel classification ............................................................................ 82
Step 2: Object segmentation ........................................................................ 83
Step 3: Object annotation ............................................................................ 83
Step 4: Regression modeling ........................................................................ 86
Step 5: Defining test data set ....................................................................... 88
Step 6: Improving regression model ............................................................. 90

Regression plot ........................................................................................90
Performance statistics .............................................................................. 91
Outlier plot .............................................................................................. 93
Error plot ................................................................................................. 93
Regression using subset of bands ............................................................. 95

Regressor and classifier band subsets ................................................... 97
Preprocessing .......................................................................................... 97

Additional regression tools ........................................................................... 99
Model search versus retraining ................................................................. 99
Applying to new images ........................................................................... 99
Pixel visualization of regression output ................................................... 101

Spectral plot .................................................................................................. 103
Class-specific display .................................................................................. 103
Display range and scaling ........................................................................... 104
Band selection ........................................................................................... 106
Band subsets used by models ..................................................................... 108

Frame panel .................................................................................................. 109
Stage panel ................................................................................................... 111

User-defined stage buttons .........................................................................112
Camera ......................................................................................................... 113

Camera controls .........................................................................................114
Adjusting scan quality ................................................................................ 115

Optimizing focus .................................................................................... 116
Auto-exposure ....................................................................................... 117
Square pixels .........................................................................................119

Camera modes ............................................................................................... 121
Belt and waterfall mode ............................................................................. 122
Scan mode ................................................................................................ 122

Stopping acquisition in scan mode .......................................................... 123
Scan compression .......................................................................................... 124

Automatically applying compression ............................................................ 127
Exporting compressed scans as ENVI .......................................................... 128

Recording panel ............................................................................................. 128
Recommended screen setup ....................................................................... 130
Setting scan name ..................................................................................... 131

Exporting .......................................................................................................133
Exporting per-image results ........................................................................ 134
Exporting per-object results ........................................................................ 134
Exporting visualizations .............................................................................. 135
Exporting visualizations as float images ...................................................... 136



perClass Mira 5.0 Documentation

4 / 211

Exporting cubes ......................................................................................... 138
Exporting regions ....................................................................................... 139

Importing regions .................................................................................. 140
Exporting label images ............................................................................... 142

Model testing ................................................................................................. 143
Flagging images for testing ........................................................................ 144
Cross-validation ......................................................................................... 145

Cross-validation over images .................................................................. 147
Cross-validation over replicas ................................................................. 150
Default action ........................................................................................153

Reference .......................................................................................................... 153
Release notes ................................................................................................ 153
Integration .................................................................................................... 165

Example of acquisition from Camera API ..................................................... 166
Application Server .......................................................................................... 169

Enabling application server ......................................................................... 169
Communicating with the server .................................................................. 170
Command list ............................................................................................ 173
Example communication using Tcl .............................................................. 174

perClass Mira Stage ........................................................................................176
Assembling instructions .............................................................................. 177
Disassembling instructions ......................................................................... 178
Supported cameras .................................................................................... 180

Supported spectral cameras ............................................................................ 180
Cubert .......................................................................................................181
Pleora eBUS ............................................................................................... 182
Headwall ...................................................................................................182

Headwall MV.X ...................................................................................... 182
Headwall MV.C NIR ................................................................................ 183
Headwall MV.C VNIR .............................................................................. 183

Resonon .................................................................................................... 183
perClass Camera API ...................................................................................... 184

miraacq_Init .............................................................................................. 185
miraacq_GetVersion ................................................................................... 185
miraacq_GetAPIVersion .............................................................................. 185
miraacq_GetRecorderType ......................................................................... 186
miraacq_GetErrorCode ............................................................................... 186
miraacq_GetErrorMsg ................................................................................. 186
miraacq_ScanDevices ................................................................................. 187
miraacq_GetDeviceCount ........................................................................... 187
miraacq_GetDeviceName ........................................................................... 187
miraacq_OpenDevice ................................................................................. 188
miraacq_CloseDevice ................................................................................. 188
miraacq_DeviceIsSnapshot ......................................................................... 188
miraacq_InitializeAcquisition ...................................................................... 189
miraacq_GetFrameSize ............................................................................... 189
miraacq_GetFrameWidth ............................................................................ 189
miraacq_GetFrameHeight ........................................................................... 190
miraacq_GetFrameBands ............................................................................ 190
miraacq_GetFrameDataType ...................................................................... 190



perClass Mira 5.0 Documentation

5 / 211

miraacq_GetFrameDataLayout ................................................................... 190
miraacq_CanReturnWavelengths ................................................................ 191
miraacq_GetFrameWavelength ................................................................... 191
miraacq_SetResamplingWavelengthCount ................................................... 191
miraacq_SetResamplingWavelength ........................................................... 192
miraacq_SetResampling ............................................................................. 192
miraacq_StartAcquisition ............................................................................ 192
miraacq_GetFrame .....................................................................................193
miraacq_StopAcquisition ............................................................................ 193
miraacq_SetExposure ................................................................................. 193
miraacq_GetExposure ................................................................................ 194
miraacq_SetFrameRate .............................................................................. 194
miraacq_GetFrameRate .............................................................................. 194
miraacq_Release ....................................................................................... 194

perClass Mira Runtime API .............................................................................. 195
mira_Init ................................................................................................... 196
Error codes ................................................................................................ 196
mira_GetVersion ........................................................................................ 197
mira_GetErrorCode .................................................................................... 197
mira_GetErrorMsg ...................................................................................... 197
mira_RefreshDeviceList .............................................................................. 198
mira_GetDeviceCount ................................................................................ 198
mira_GetDeviceName ................................................................................ 198
mira_SetDevice ......................................................................................... 198
mira_LoadModel ........................................................................................ 199
mira_LoadCorrection .................................................................................. 199
mira_SetMinObjSize ................................................................................... 200
mira_SetSegmentation ............................................................................... 200
mira_GetInputWidth ...................................................................................201
mira_SetInputWidth ................................................................................... 201
mira_GetInputHeight ................................................................................. 201
mira_GetInputBands .................................................................................. 201
mira_GetInputDataType ............................................................................. 202
mira_GetInputDataLayout .......................................................................... 202
mira_GetMaskType .................................................................................... 202
mira_StartAcquisition ................................................................................. 203
mira_ProcessFrame ....................................................................................203
mira_ProcessCube ......................................................................................203
mira_StopAcquisition .................................................................................. 204
mira_GetFrameDecisions ............................................................................ 204
mira_GetDecCount .....................................................................................204
mira_GetRegVarCount ................................................................................ 204
mira_GetRegVarName ................................................................................ 205
mira_GetObjDataRegOutput ....................................................................... 205
mira_GetFrameRegOutputVar ..................................................................... 206
mira_GetDecName .....................................................................................207
mira_GetDecColor ......................................................................................207
mira_GetObjCount ..................................................................................... 207
mira_GetObjDataInt ...................................................................................208
mira_GetObjDataClassSize ......................................................................... 209



perClass Mira 5.0 Documentation

6 / 211

mira_GetObjDataClassFrac ......................................................................... 209
mira_SaveImage ........................................................................................209
mira_Release ............................................................................................. 210

Troubleshooting ............................................................................................. 210
How to enable logging ............................................................................... 211



perClass Mira 5.0 Documentation

7 / 211

Introduction

perClass Mira is the easiest user interface for interpretation of spectral images with real-time
deployment. 

It is a comprehensive collection of tools empowering users to 
· Acquire high quality spectral images using a range of multi- and hyper-spectral cameras
· Build classification and regression solutions
· Export specific information from detected objects or user-defined regions
· Batch process new scans using user-defined solutions
· Deploy solutions to a live data stream and integrate in production

It is an application development tool for industrial and applied researchers who leverage spectral
imaging as a tool. Specifically, two use-cases are optimized:

1) Development and deployment of smart sorting machines by system integrators . Example
application is nut sorting, fruit quality grading or foreign object detection machines in food industry.

2) Processing of large number of spectral scans extracting relevant information of further
research. Example application domains are plant phenotyping and food quality 

perClass Mira is tightly integrated with perClass Stage, a linear lab-scanning kit suporting a range
of spectral cameras.

perClass documentation is structured in the following way:
· The Getting Started chapter guides you step-by-step how to

o Understand perClass product structure
o Install the software and active its license
o Build a classifier for spectral images you already have stored in files
o Acquire new scans from spectral camera and interpret them

· The Users' guide describes each software component in detail.
· The Reference provides detailed information on

o Software release notes
o Software integration
o Supported sensors
o perClass Stage



perClass Mira 5.0 Documentation

8 / 211

o perClass Mira Runtime API
o perClass Camera API
o perClass Application Server API

Getting started

This document describes perClass product structure and provides quick guides to:
· Build a classifier on existing scans
· Acquire new data from a spectral camera and interpret it using a classifier

perClass product structure
perClass is a collection of multiple tools including
· perClass Mira User interface emporing users interpret spectral images
· perClass Mira Stage, a hardware lab-scanning kit supporting different spectral cameras.
· perClass Camera API connecting to different spectral cameras
· perClass Mira Runtime API to embed solutions developed in the perClass Mira to custom applications
· perClass Application Server allowing one to build live demonstrators by remotely controlling perClass

Mira GUI and acquisition via text commands
· perClass Batch processor allowing one to apply solutions to new scans without launching the perClass

Mira GUI

Installation and license activation
This section describes how to install perClass Mira software and activate its license.

Run the installation file, the installer dialog will appear:



perClass Mira 5.0 Documentation

9 / 211

In case you already have an existing perClass Mira installation, the following dialog will also appear:

If you wish to install the new release into a directory you specify, click on Cancel button.

You need to accept end-user license agreement before proceeding:



perClass Mira 5.0 Documentation

10 / 211

If you selected to customize location, you may now specify the installation directory:

TIP: You may freely install multiple releases of perClass Mira on the same computer. If you, it is
recommeded to use full version including date in the file name, for example: "perClass_Mira_4.2_24feb23"



perClass Mira 5.0 Documentation

11 / 211

In the last step, you may confirm or cancel the installation:

After extracting the files:



perClass Mira 5.0 Documentation

12 / 211

Finally, you may launch the installed software directory from the installation dialog:

Activation

On the first run, the Activation dialog appears:



perClass Mira 5.0 Documentation

13 / 211

Fill in the activation key and press Activate

Build classifier on existing scans
This tutorial demonstrates how to quickly build a classifier interpreting data in existing scans.

If your system contains a GPU, please start the software via perClass_Mira_gpu shortcut or .exe file.
Otherwise, use the perClass_Mira shortcut that provides only CPU backend.

Creating a project

Create a new project using File / New Project menu command.



perClass Mira 5.0 Documentation

14 / 211

The user has an option to either start from scans already stored in files or acquire data from a connected
spectral camera.

In this tutorial, we load an existing scan. Therefore, select the perClass project type .

The top level data directory field specifies where perClass Mira expects the scans. We will select the
example_scans sub-directory in the installation directory, typically  C:/Program Files/perClass

Mira/example_scans.

The Computational device combo box allows you to specify the GPU, if available.

Adding images

perClass Mira main window will open. In order to add images, right-click with your mouse in the Images list
and select Add images to project...  from the context menu.



perClass Mira 5.0 Documentation

15 / 211

A dialog box will appear where you can select one or more images. For the perClass project type, the ENVI
.hdr files are listed corresponding to the ENVI cubes.

TIP:  In order to select more than one image, hold Ctrl and click on the desired file names. If you wish to
select a set of images, you may click on the first one, then hold Shift key and click on the last one of the
desired group

In our example, we open the natural_images1.hdr file.



perClass Mira 5.0 Documentation

16 / 211

Spectral cube visualization

If the spectral cube specifies default R,G,B bands, like in our example, the image will open in false-color
preview mode. Otherwise, the single band mode is used.

You may drag the R,G,B lines in the spectral plot to adjust the false-color view. As you can see, the scan
was acquired by a sensor operating in NIR spectral range (900-1700nm). Therefore, the colors are only
visual aid and do not corresond to the color of the physical objects.

Moving the mouse over the image, you will see the spectrum at each point as a white line in the spectral
plot. Details on pixel coordinates, wavelength and a value can be found in the status bar area.

You may switch to the single band mode using the Cube button  on the toolbar. 

Dragging the blue line in the spectral plot, you may change the band. Note the band index and
wavelength in the status bar.

Note the red pattern on some of the pixels. This is a visualization feature that highlights pixels with values
higher than the current maximum bound of the spectral plot.

You may adjust the spectral plot range using the mouse wheel or by clicking and dragging in the spectral
plot. 

We will load the second image. Select again Add images to project...in the Images context menu and
select natural_objects2.hdr. 



perClass Mira 5.0 Documentation

17 / 211

Note, that the spectral plot bounds do not change when moving between images. With the manual spectral
bounds, you always see comparable view of the data.

We may also enable auto stretch of image brightness in the spectal plot context menu (via right mouse
click).

The auto-stretch extends brightness of each image so that a fixed percentile of the image histogram is
visualized. The percentile can be adjusted by the slider.
When moving between the images, note that the spectral plot bounds change depending on the image
histogram. The auto-stretch mode assures you alwas see "something" irrespective how bright or dark an
image is. You leave the auto-stretch mode by either disabling it in the menu or manually adjusting the
spectral plot bounds.

TIP:  The red pattern for pixels above the top spectral plot bound can be changed into white color in View /
Show saturated data as menu command

Training a clasifier

perClass Mira allows you easily define custom classification solutions. Classifier is an algorthm able to
assign any pixel of your image to one of pre-defined classes.



perClass Mira 5.0 Documentation

18 / 211

The process of building a classifier comprises three steps:
· Defining the classes of interest
· Labeling examples used for training
· Testing / validating that the classifier behaves as expected on unseen examples or images

In order to define a class, right click in the Classes list and select New class... command:

A dialog will appear, where we can specify the class name. We're interested to define the class called
background:

The new class will be added to the class list:

We may now label (paint) some pixels we consider background:

Let us change the color to lighter blue that is easier to see in our image by clicking on the color swatch next
to the class name.



perClass Mira 5.0 Documentation

19 / 211

In order to label pixels using the selected class, hold left mouse button and move over the image.

To zoom the view in or out, you may hold Ctrl key and use mouse wheel. This zooms aiming at the mouse
pointer. Alternatively, use the Zoom buttons on the toolbar

To delete labels, hold the Shift key and paint with a mouse. 
TIP There is always one Unknown class available in the class list. Selecting it and painting also removes
any existing pixel labels.

The brush size may be adjusted using the Brush button on the toolbar.

We define also the second class called leaves and the third one called nuts:



perClass Mira 5.0 Documentation

20 / 211

Note, that mean spectrum of each class and its min/max range are indicated in the spectral plot.

We can now click the Model search toolbar button to build a classifier. The software will use the labeled
pixels to optimize classification model. It will then apply the trained model to the entire image switching to
the Decisions view. To see the entire image, we zoomed out.

Switching between labels and decisions

In the decision view, each image pixel is assigned to one of the user-defined classes.

Note, that we view a visualization comprised of the decision layer as a trasparent overlay over the data
layer (RGB or single band).

We may change the transparency using the Alpha toolbar button. When you click the Alpha button, two
sliders will appear.



perClass Mira 5.0 Documentation

21 / 211

The left "All"  slider controls all classes. Adjusting it, we make all classifier decisions more transparent
revealing the data layer (single band or the RGB Preview depending on the selection).

The right slider is class-specific. It controls the class, selected in the class list. It allows us to fine-time
visualization based on our use case. For example, we may wish to keep only specific defect strongly visible
where all other classifier decisions are fully transparent.

In order to label more examples, click on the Labels button. 

TIP: You may use Spacebar key to switch to the previous layer (here we would switch from Decisions to
Labels)

Improving the classifier

There are several ways we may improve the classification results:
· Improve the labeling and retrain the model
· Add / remove classes
· Remove noisy or uninformative bands

Subjectively, we may judge classifier performance visually by applying it to new images unseen in training.
In order to assess objective classification performance, we may estimate error using confusion matrix tool
on test images, unseen in training.

Improving the labeling

perClass Mira provides an active learning tool that helps us to understand what examples the model did not
see in training.

You may enable it using the Show unknown toolbar button  or by pressing u (unknown)



perClass Mira 5.0 Documentation

22 / 211

There is an extra decision "Unseen in training" with high transparency. The extra decision highlights the
pixels that the classification model considers very different from anything labeled. 

For example, the leaf on the right side is largely rejected being slightly different than the two leaves we
labeled.

We may add extra labeling and retrain the model using the Retrain toolbar button 

The Show unknown tool allows us to label in the areas needed and, thereby, building representative training
sets.

TIP: It is generally better in perClass Mira to define less but accurate and representative labels. Use small
brush with at least 2 pixels (to allow assign-stroke-to-class)



perClass Mira 5.0 Documentation

23 / 211

Adding new classes

We may add or remove classes anytime. In our example, we labeled only background, leaves and nuts so
far. However, there are other objects of other materials present, such as nut shells, olive kernels, wood or
stones.

We add several classes to the project:

We will then use Model search to find a new model. The difference between Model search and Retrain
tools is as follows:
· The Model search performs full search for the best model
· The Retrain tool uses the existing model definition and retrains it using the current labels

If we only perform slight update of the labeling, for example, around the edges or adding more
representative examples of existing materials, Retrain is sufficient. The model search is useful when we add
entirely new classes or label quite defferent examples of the existing classes. 



perClass Mira 5.0 Documentation

24 / 211

We can see that we have labeled olive kernels as "wood". We may wish to have them labeled as "shell"
instead. In perClass Mira, we have a full control on the labeling. We can easily assign individual labeling
strokes to different classes.

Switch to the Labels mode (via the toolbar button or by pressing small l key (l as in Labels).

In the Classes list, select the class you wish to assign the stroke to (Shells). Then, right-click with the
mouse over the brown label stroke on top of the olive kernel. 
In the context menu, select Assign region to current class.



perClass Mira 5.0 Documentation

25 / 211

The label stroke will be assigned to the shells class and will become red:

We also assign the second label stroke on top of the other olive kernel to shells and re-run the Model
search.
The olive kernels are now part of the red shells class. Note, that in perClass Mira, the user may define
classes that span multiple materials or represent generic high-level concepts (defect, background, product
etc.)



perClass Mira 5.0 Documentation

26 / 211

Where to go next?

In this Getting Started section, we saw how to load scans from disk, define classes and build a pixel
classifier.

The next step, in many applications, would be to define object segmentation to extract objects. This is useful
to either classify objects or to extract further information from the objects (such as mean spectra, spectral
indices or shape information)

Acquire data and interpret
This tutorial illustrates how to
· acquire data using perClass Stage
· build classification model
· apply the model on live data stream

This chapter uses perClass Stage scanning kit and Headwall MV.C VNIR camera connecting over USB3.
Follow these steps for specific camera installation instructions.



perClass Mira 5.0 Documentation

27 / 211

In this example, we use the default set of plastic samples included with each perClass Stage. These are
tiles of different technical plastics with etched labels such as A1-A6 and B1-E1. The letter corresponds to a
material and the number to its variant. For example, A1 and A3 represent the same material in different



perClass Mira 5.0 Documentation

28 / 211

color combinations while A1 and B1 two different white plastics.

Creating a project for acquisition

When starting an acquisition project, we need to select the desired camera type on the right side of the
New project dialog. Note, that any image acquisition in perClass Mira leverages "perClass" project type
which gets automatically selected when clicking on the camera type. In this tutorial, we select the Headwall
MV.C VNIR camera.



perClass Mira 5.0 Documentation

29 / 211

TIP: The Quick start tab only lists camera and project types we have flagged as favorite. You may select
from all supported acquisition devices in Live acquisition tab and project types in Scans in files tab.

Connecting to the stage

In order to scan, we need to connect to perClass Stage and to the camera.

Recommended screen organization for scanning is as follows:

· the Stage panel in the bottom-left provides all stage controls.
· the Camera panel shows controls of the acquisition
· the Recording panel in top-right allows us to define references and scan recording settings
· The Frame panel in the center shows the raw signal from the camera

We need to connect to the perClass Stage in order to control it by pressing the Connect button in Stage
panel:



perClass Mira 5.0 Documentation

30 / 211

The stage performs a homing run. The white reference block will then be under the camera. This
represents the "position 0" of the stage.

Connecting to the camera

In order to connect to the camera, press the Camera button on the left side of the toolbar:

When the camera is initialized for the first time, we are offered a dialog to select the device:



perClass Mira 5.0 Documentation

31 / 211

Once connected, we may start the acquisition either using the Play toolbar button or via Play button in the
Camera panel:

The Camera panel then shows the speed of acquisition, namely the camera speed (light blue) and the total



perClass Mira 5.0 Documentation

32 / 211

speed including also user interface updates and all other activities (in green).

Acquisition can be paused by the Pause button . The Camera panel can be used to adjust acquisition

parameters such as exposure (integration time) and frame rate . In this example, we keep the
default settings.

Recording references

In order to interpret spectral images, it is highly recommended to correct the raw data from the sensor into
reflectance. This operation makes the data robust to illumination changes and thereby makes the
interpretation models more generally applicable.

Reflectance correction is based on two reference scans, namely the "white" reference corresponding to
the highest reflection we're considering and the "dark" reference defined by the noise of the imaging
sensor.

We will first move the scanning table to the white reference bar. There are several ways how to move
the stage. The easiest is to use the Alt + right / left keystrokes. We can see actual raw data from the image

sensor in the Frame panel 

Defining the position of white reference bar 



perClass Mira 5.0 Documentation

33 / 211

The recommended best practice is to move to the start position on top of the white reference and fix this

white start in the Stage panel. It is important that the entire field of view is fully occupied by the white
reference. In order to fine-tune the position, we may move at slow speed with Shift + Alt + right / left

keystrokes. We can use the pin button  to fix the position. 

Similarly, we will fix the white end .

We can then move to the center of the white reference by pressing the Center button 

Alternative ways to move the stage are:
1. Using the dedicated movement buttons 
2. Via Stage A, B and C buttons. We may assign specific movement commands in via the respective

combo-boxes in the upper part of the Stage panel

TIP: You may define the most useful commands for your scanning work flow in the A,B,C command combo
boxes. The choices are stored in mira.ini file and are available for future software sessions.

TIP The keystrokes to invoke A, B and C stage buttons are the bottom three numerical pad keys: the "digit
0", "the decimal dot" and "Enter key". This allows one to easily invoke stage buttons via keyboard without
looking.



perClass Mira 5.0 Documentation

34 / 211

Acquiring references

Once we are on top of the white reference, we can acquire it by pressing the Record button in the
Correction tab or the Recording panel. 
Because MV.C VNIR camera does not have integrated shutter, we need to cover the optical lens before

acquiring the dark reference using button . For other hyperspectral cameras, such as Headwall MV.X,
MVC.NIR or Specim FX, the integrated shutter will be closed automatically before aquiring the reference.

The time stamp and exposure used when recording the references is displayed in the Recording panel.

TIP After acquiring references, the Output panel of perClass Mira lists the min, max values and the mean
and standard deviation statistics across all bands. This helps us to easily spot common errors such as
shifted/inhomogeneous white reference or not fully closed shutter when acquiring the dark reference.

Once the references are acquired, we may switch to the Corrected stream visualization in Camera mode.

TIP: If you change camera exposure, you need to retake the references. Difference in acquisition and
reference exposure is indicated by red color of exposure value to be easily spotted.

Defining a scan area

In order to record a scan, we define what area of the scanning table we wish to acquire. We start the
camera (Play toolbar button in Camera mode) and move the stage by pressing and holding the Move
right button.



perClass Mira 5.0 Documentation

35 / 211

We can then define the start and stop of the scan area by pressing the respective pin buttons

Recording a scan

In order to record a scan, we can switch to the Recording tab next to Correction:



perClass Mira 5.0 Documentation

36 / 211

The Recording tab allows us to specify the directory where our scans will be saved  and the scan

name 

Once the scan name is defined, we can record our first scan. In our example, we have the button C set to
Scan and record command. Therefore, we may press this button in Stage panel or pressing the physical C
button on the stage:



perClass Mira 5.0 Documentation

37 / 211

TIP: If you use Scan and Record command and "nothing happens", double check that you have filled in a
scan name in Recording panel. If the name field is empty, scan cannot be recorded.

If you press the Record button in the Recording panel, only acquisition and recording into a file will start,
not the stage movement. This is useful, when recording data without perClass Mira Stage, for example on
an industrial conveyor belt. In order to simultaneously move the stage and record, the Scan and record
command is needed. 

It is a good practice to scan multiple images for the sake of testing any developed models on data unseen
in training. In order to help with naming multiple scans, perClass Mira provides three options:

1. If the scan name contains a trailing digit, the name turns into greeen. Using cursor keys or mouse
wheel, we may increment or decrement this traling index. Words, seprataed by undescores, form
different groups. This can be used to add metadata on scanning conditions (day, variety, supplier etc.)

TIP: Current index can be also increased by the stage button assigned to the Increment scan name
command. In this way the scanning process can be fully controlled by stage without use of keyboard or
mouse

2. By checking the Add index checkbox, the underscor + index will be added to each scan name. Starting
index can be changed in the adjacent spinbox.

3. By enabling the Add timestamp checkbox, the current time stamp at the start of acquisition is
appended to the file name (Note, that timestamps are also stored in header files, so adding it in the
filename is not necessary in all use-cases)



perClass Mira 5.0 Documentation

38 / 211

After the scan is recorded, it is loaded in perClass Mira image list  and the software switches to the

Images mode 

perClass Mira interface is optimized for efficient acquisition of a large number of scans. All you need to do
is to place new physical sample on the scanning table, increment the scan index by B button and acquire
another scan by pressing the C button.

We're now ready to interpret our first scan.

Building a classifier and applying to live data

We can design our classifier in the familiar way. We define classes, paint labels and build a model. The
plastic samples, included with each perClass Mira Stage, are marked with a letter, followed by a number.
The letter describes the material, and the number its variant. In our example, we want to distinguish different

plastic materials, irrespective of color. Therefore, we define background and material classes A - E 



perClass Mira 5.0 Documentation

39 / 211

Then, we pain the labels  and create a model by pressing Model search

We can see that all different variants of material A can be separated from different white plastics B-E. This
demonstrates the unique value of spectral imaging where we may base our interpretation on  material
composition, not appearance.

In order to demonstrate how our solution works live, we assign the Cycle scanning area command to the
button A in the Stage panel. By pressing A button of the stage, the software switches to the Camera mode
and stage starts cycling.



perClass Mira 5.0 Documentation

40 / 211

In the toolbar, we may now see also the Decisions button enabled, in addition to Raw and Corrected
buttons. We may choose how do we want to see the live data stream.

The Camera panel will then also show a classifier speed (the red line) .



perClass Mira 5.0 Documentation

41 / 211

This concludes our acquisition tutorial. We have learned how to acquire references, record scans, define
models and run the full correction and modeling pipeline on a live data stream.

User guide

This chapter provides detailed description of individual perClass Mira components.

New project
Once the software starts, the New Project dialog appears.

The default Quick start tab allows the user to select three important settings:
1. The project type and camera used for acquisition if any camera is available
2. The top-level data directory
3. The computational device



perClass Mira 5.0 Documentation

42 / 211

perClass Mira allows the users to either start from existing scans already stored in files or to acquire new
scans from an attached spectral camera.

Note, that perClass Mira supports a broad range of project types and many common spectral camera
types. You may view all avaialble options in the Scans in files and Live acquisition tabs.

Direct acquisition into perClass Mira always uses the "perClass" project type.This assures that users of all
camera types can take advantage of identical and complete work-flows for data correction.

The top-level data directory  defines where all scans are located. It is stored in the project file but can
be changed anytime from the Image list context menu.

perClass Mira does not write into the data directory unless the user explicitly asks to (for example when
exporting the results). The reason is that data directories are assumed to be read-only so that original data
set is not altered in processing.

The Computational device  combo box allows the user to define what computational resource will be
used for data processing. Note, that perClass Mira installation comes with two executables: The
"perClass_Mira.exe" that is CPU-only and works on any PC and "perClass_Mira_gpu.exe" that
offers multiple backends including CPU, NVIDIA GPU and OpenCL CPU/GPU. If no correct GPU drivers
are found, the later executable may not be able to start.

TIP: In case you experience crashes or very slow operation when using a GPU, please update your GPU
drivers to the latest available. For most users this resolves the issues.

Objects
Object segmentation defines spatially coherent objects based on pixel classification results. In perClass
Mira, many operations and analysis types extend naturally to objects. For example, we may wish to
compute spectral index only on objects of interst, model quality of some objects using regression analysis
or export mean spectrum per object for further research.

The first step to apply object segmentation is to define one or more foreground classes. This can be done
using Image list context menu and selecting Flag class as foreground. Alternatively, the 'F' shortcut toggles

the foreground flag for the currently selected class in the Class list 



perClass Mira 5.0 Documentation

43 / 211

The Objects panel presents a separate section  where objects are defined (object segmentation) and

where objects are classified 

Object segmentation

Object segmentation is performed by selecting Objects toolbar button. In perClass Mira, object
segmentation is controlled by segmentation mask. By default, it is constructed handling each of the

foreground classes separately. This is the Each foreground mode . Note, how the leave touching the
walnut in pixel decisions are segmented separately.

Object segmentation directly removes all objects smaller than specified minimal size Changing the
minimum size, we can quickly focus on large structures:



perClass Mira 5.0 Documentation

44 / 211

Alternative type of segmentation mask is All foreground which combines all foreground classes together:

The display object list checkbox enables detailed information on segmented objects in the Output window:

This includes object id, centroid, size in pixels, bounding box and object decision. At the last line, the
smallest object size is also provided. This is helpful when adjusting minimum object size.

Object separation

In some situations, we may wish to define objects manually. For example, we may wish to provide very
specific local areas for regression modeling or we wish to export mean spectra of specific regions that do



perClass Mira 5.0 Documentation

45 / 211

not separate using our pixel classifier. This is possile using the Additional object separation tool: 

By setting the Manual option, we may define object separation by drawing background labels in the
object segmentation result.In our example, we may force separation of the leaf from the nut even when we
use the All foreground mode or separate the nut object into two parts (for example, to extract mean spectra
from both).

Note, that the manual object separation does not extend to runtime. It is intended for specific highly
controlled extraction of data, not for automatic application to new images.

Holding shift, we may remove the separation labels. Clearing separation labels entirely is possible via the
context menu:



perClass Mira 5.0 Documentation

46 / 211

Object classification

perClass Mira directly applied object classifier after object segmentation. We may view per-object

decisions instead of the object IDs by selecting the Object decisions option 

In Each foreground mode, the classification is implicit i.e. each segmented class is the object decision.

This is indicated by the class color and displayed in the object list , 
Note, that while the object decision visualization seems very similar to pixel decisions in our example, there
are many differences such as removed small objects along the edges.

In the All foreground mode, classification is performed based on object content. Below, we can see that
the compound object composed of the walnut touching the leaf in the center is classified as a nut. By
default the classification is based on maximum fraction (majority voting). Each object in All foreground
mode provides information on pixel counts of each foreground class. See the highlighted line in the object
output for object 7. Because the majority of pixels is classified into nuts class, the entire object is as well.



perClass Mira 5.0 Documentation

47 / 211

Alternative classification rule can be defined in the Decisions section. In the example below, we se the rule
such that if a fraction of leaves class is higher than 16%, the object is classified as leaves. That's what
happens to object 7. Currently, two rules can be defined based on fraction or absolute number of pixels.

Regions
Regions tool in perClass Mira provides annotation of image areas. It is used for several purposes:
1. It is always available as an area annotation tool
2. It allows extraction of information from specific image areas
3. It provides us with ground truth information for object classification
4. It enables localized annotation of specific objects for regression

Region annotation

Region annotation tool is always available by selecting the Regions toolbox button. We may then draw a
rectangle anywhere in the image. This tool is useful, for example, for a quick annotation of image
content by domain experts.

The current class, selected in the class list, is defining the color/class of the region.



perClass Mira 5.0 Documentation

48 / 211

Each region has a unique name, which can be changed by clicking:

User can attach arbitrary text content to the region by clicking the left upper rectangle:



perClass Mira 5.0 Documentation

49 / 211

Regions with existing content are highlighted using green rectangle. When hovering over, the content is
displayed in a tool-tip:

Confusion matrix
When designing a robust classification algorithm, we need to understand its performance and robustness
in detail. In perClass Mira, we can use the Confusion matrix tool to understand and fine-tune pixel
classification performance. 

In this section, we use the potato virus data set to illustrate Confusion matrix tool  and its use in
performance understanding and fine-tuning. When a pixel classifier is trained, the confusion matrix on
training set is always available in the Training set tab of the Confusion matrix panel.

Confusion matrix shows detailed report on classifier performance. In rows, it provide information on all
labeled examples in the training set (the ground truth). In the columns, it captures the classifier decisions
on these examples. Ideally, all labeled examples are allocated to the same categories. The confusion matrix
would show only diagonal elements (displayed in green). In practice, some examples are misclassified.
These show up off-diagonal and are renderred in red color.

By default, the confusion matrix is normalized by each row. Thie means that the entries represent
accuracies on-diagonal and error rates off-diagonal. The sum of the off-diagonal errors i.e. the class error

is displayed in the right-most column . Class error reflects what percentage of the ground truth pixels
is misclassified.

Similarly, the per-class purity is displayed in the bottom row . This denotes the fraction of each class
decisions that is actually classified correctly. This allows us to quickly judge if a specific classifier decision
is trustworthy. For example, when our classifier provides decisions on leaves, it is correct in 95% of cases.
However, when classifying the virus it is correct only on 73% of labeled pixels in our training set.



perClass Mira 5.0 Documentation

50 / 211

Finaly, the right-bottom corned provides one summary perfrormance indicator: The mean error over
classes - the average of per-class error rates.
The value of confusion matrix is in providing detailed understanding of classifier behaviour. While 2.8%
mean error does not seem too high, confusion matrix allows us to learn quickly, that 7% of healthy leaves is
being misclassieid as a virus (the are false positives).

Instead of normalized matrix, we may wish to display the absolute pixel counts in each field. This is possible
by disabling the normalization in the context menu:

The not-normalized confusion matrix may highlight that some of our classes are undersamped. For
example, while our virus class contains only 165 labeled pixels, the background contains almost four
thousand.



perClass Mira 5.0 Documentation

51 / 211

Test set confusion matrix

By default, the confusion martix is display that is estimated from training set. This means from all

images that are not flagged as a test set.



perClass Mira 5.0 Documentation

52 / 211

In order to properly evaluate any classification solution, we need good performance on the independent
test set. The reason is that we need confirmation of generalization capability of our classifier on example
unseen in training. In perClass, testing is defined on the level of images. Images flagged as a test set are
not used for training the classifier.

NOTE: In order to take any change in test image flags into account, we need to retrain the model!

To estimate the test set confusion matrix, we switch to the Test set tab . In our example, we will observe
that the confusion matrix is not complete. This is because not all classes were represented (labeled) in our
test scans.



perClass Mira 5.0 Documentation

53 / 211

We add relevant labeling to the two test scans and switch to Training set confusion matrix and back to the
Test set matrix to update it:

Note, that we do not observe the same misclassification of leaves into virus as in the training set. In

addition, we can see higher errors in two new fields, misclassifying some stem as leaves  and

background as virus .

It is very difficult from the performance estimates only to judge to what extent are these relevant errors. We
need to understand what pixels these misclassications represent in the image. That is greatly simplified by



perClass Mira 5.0 Documentation

54 / 211

perClass Mira Errors tool and the Current image confusion matrix.

Current image confusion matrix

When we switch to Current image confusion matrix, we can easily introspect how individual confusion

matrix entries map to image pixels. The confusion matrix is displayed on for the pixels labeled in the

selected image . Note, that again, we may miss some of the classes. The respective rows of the
confusion matrix then remain empty.

The Current image  confusion matrix is fully interactive. When we hover over the confusion matrix entries,
errors at the pixel level are visualized over the image.

For example, moving the mouse over the background class error , The Errors mode is enabled.
We can see only the labeled pixels falling into the specific field of the confusion matrix. The pixels correctly
classified by our model are rendered in green and the misclassied pixels in red. In our example, we can
see al pixels labeled as background, some misclassied into virus and leaves classes.



perClass Mira 5.0 Documentation

55 / 211

We may wish to adjust transparency of foreground and background layers using the Alpha toolbar button.
This allows us to see more clearly what structures do the errors represent.

Optimizing classifier performance

In perClass Mira, classifier performance may be further fine-tuned and optimized using the confusion
matrix tool.

Tuning the classifier perfromance to application-specific requirements is a basic necessity in any
practically deployed machine learning system. It is because default way that statistical models make
decisions largely depend on the class abundancy in the training set which typically does not correspond to
application needs. 

perClass Mira provides two ways to tune classifier performance in the confusion matrix:
1. Cost sensitive optimization
2. Performance constraints

Note, that all classifier optimization in perClass Mira happens on the training set, NOT the test set. This is
very important point. Test set, in perClass Mira, is considered only for performance evaluation, not for any
form of model tuning.

Cost sensitive optimization

In the Training set confusion matrix , we right-click on the field that we wish to optimize. In our
example, we wish to lower the 7% of leaves misclassified as virus. Some of these pixels are pointed by

arrow  The slider in the context menu allows us to increase the cost for this entry:



perClass Mira 5.0 Documentation

56 / 211

Below, we can see that, by adjusting the slider , we can directly see classifier decisions changing. The

virus misclassifications in the area disappeared. However, another entry in the confusion matrix shows

error increase . It represents the virus pixels, misclassified as leaves. 

We cannot see these piels on the current image of the healthy (control) plant as it does not contain any
virus infection. We can switch to training image with virus symptoms to investigate impact of this adjustment
on true virus class.

Performance contraints

The alternative way of fine-tuning the classifier performance is by defining performance contraints.This
means that we limit the error or accuracy on certain field or fields. We can do that by double clicking any
field of the matrix.

In our example, we double click on the leaves misclassified as virus . A small green box appears in its
corner and the current value is listed below estimated error of our solution. The total number of solutions

is decreased by each new contrain.



perClass Mira 5.0 Documentation

57 / 211

In order to tune the constrain, move mouse over the constrained field, hold Ctrl and use mouse wheel to
adjust the constrain. The new solution is displayed.



perClass Mira 5.0 Documentation

58 / 211

Multiple contraints can be defined on both errors and accuracy fields:



perClass Mira 5.0 Documentation

59 / 211

By clicking the tiny squares in top-left corners of the constrained fields we may disable / enable individual
constraints. 



perClass Mira 5.0 Documentation

60 / 211

Object confusion matrix
In the same way pixel confusion matrix allows us to understand performance of pixel classifier, perClass
Mira provides object confusion matrix to characterize object classification performance.

In order to estimate object confusion matrix, we need 
1. object classifier and 
2. object ground truth, defined by image regions. 

In our example, we built a pixel classifier and flagged several classes as foreground . We use the All

foreground mode and minimum size of 200 pixels  By clicking Objects toolbar button  , we
perform object segmentation followed by object classifier:



perClass Mira 5.0 Documentation

61 / 211

In order to define object ground truth, we use the Regions tool an annotate individual objects assigning
them to their respective classes:

Now we can estimate the object confusion matrix by switching to the Confusion matrix panel, selecting
Objects. We right-click to open context menu and select Object confusion matrix:



perClass Mira 5.0 Documentation

62 / 211

The object confusion matrix collects information from labeled regions (our ground-truth) in rows  and

classifier decisions in columns . 

Note, that when only a single image is selected (like in our case), moving over the confusion matrix will
highlight regions and object bounding boxes represented by the respective field. In our example, we can
see both ground truth shells and shell decisions (object bounding boxes).

TIP: Note textual explanation available for each confusion matrix field in the top of the panel. 

Detailed information on object matching

Apart of the square confusion matrix part summarizing all object decisions matched to the ground truth, the

object confusion matrix also collect information on all object decisions and all labeled regions .

The decisions section clarifies how many object decions are not matched to the ground truth. This is
important to understand false detections that may pose significant burden in sorting applications. The

labeled regions section provides extra insight on labeled regions that were not identified by the object
classifier.



perClass Mira 5.0 Documentation

63 / 211

Example of interactive inspection

In the example below, we hover with the mouse pointer on the field . This highlights single region from

leaves class that was not found . The Output window shows a log of all matches between the ground
truth regions and object bounding boxes. We can see that the reg2 region could not be matched as the
default 0.5 level of the IoU (intersection over union) measure to any of the bounding boxes.

Copying confusion matrix

Object confusion matrix can be copied as image or as text.

Copying object confusion matrix as image

When copying as image for presentations, you may wish to disable dark background via context menu:



perClass Mira 5.0 Documentation

64 / 211

Copying object confusion matrix as text

Copying confusion matrix content as text is useful, when you wish to perform further analysis of the results
e.g. in Excel.



perClass Mira 5.0 Documentation

65 / 211

Visualization (spectral indices)
perClass Mira provides an interactive visualization tool enabling the user to define custom spectral indices
highlighting different aspects of spectral data. By a spectral index, we mean a quantity computed from
spectral information at a pixel level. 

For example, one commonly-used spectral index is NDVI which, in broad terms, highlights a difference
between visible and near-infrared reflectance. It is used in remote sensing in order to estimate vegetation
coverage NDVI = (NIR - RED) / (NIR + RED). In the NDVI equation, the RED and NIR terms corresponds
to integrated reflectances in Red (visible) and near-infrared areas of the spectrum.

In perClass Mira, visualization or spectral feature extraction tools allow the user to define her own spectral
indices either based on wavelength specification or interactively, While the former lets us work with spectral
indices defined in literature, the later provides a powerful way of discovering hidden signal in spectral data
by interactive experimentation with a direct visual feedback.



perClass Mira 5.0 Documentation

66 / 211

In order to use the interactive visualization, we organize perClass Mira screen in the following way: We

position the Visualization panel above the Spectra .

We may select the type of spectral feature (generic equation) in the combo box located in the Visualization
panel.

We select the (A-B)/(A+B) equation covering the NDVI type of index discussed above. A new spectral

feature is created called "F1:(A-B)/(A+B)". We click on the new entry in the list box. The spectral
index is then computed for every pixel fo the image using default definition of A and B spectral ranges. Pixel
intensities are integrated (summed) in the specified A and B spectral ranges. For example, R_{1451:1489}
(in LaTeX notaion) means integrated reflectance between 1451 and 1489 nm. Each of the spectral feature



perClass Mira 5.0 Documentation

67 / 211

parametes (in our case A and B) are also highlighted by colored bars in the spectral plot . Note that
the equation is displayed in the Visualization panel using wavelength definition in nanometers. The
parameters listed can be also changed directly by specifying the wavelengths. When hovering over the

image, the floating point spectral feature value is displayed in the status bar .

Adjusting spectral features

Spectral features may be adjusted in two ways:
1. Interactively
2. By specifying the wavelength ranges

Interactive spectral feature definition
We may adjust the current spectral feature, selected in the list box, by dragging the color bars,
corresponding to its parameters, in the spectral plot. When dragging the bar we change its position.
Alternatively, we may control its boundaries by dragging the bar borders. 

TIP: Hold Ctrl to always drag the bar. This is useful if the bar is narrow and simple click-and-drag would
result in change of the bar boundaries

Specification of wavelength ranges
When the spectral index definition is provided in literature by wavelength ranges, we may directly specify it

for each of the parameters .



perClass Mira 5.0 Documentation

68 / 211

Note, that the actual number of spectral bands is displayed next to each parameter . In our example,
each of the two parameters is computed by integrating content of two spectral bands.

In the following example, our wavelength range for parmater A does not cover any existing spectral

bands in our image. This is indicated by zero bands  and a warning in red. The entire image is then

also displayed in red - the default "invalid" color .



perClass Mira 5.0 Documentation

69 / 211

Scaling spectral features

Auto-scaling
By default, visualization of spectral features is auto-scaled. This is indicated by the Auto scale checkbox



perClass Mira 5.0 Documentation

70 / 211

When switching between different images, the minimum and maximum value is adjusted based on
the current image. While this is useful for a quick understanding of the data, we may want to fix the
visualization to a single range. This makes the visualization comparable for all images. We may do just that
either by disabling the Auto scale checkbox or by adjusting the Min and Max edit fields.

Manual scaling
When adjusting minimum and maximum range values manually, we may notice that some pixels are

displayed in green or cyan . These correspond to pixels below or above the current visualization
range. You may adjust the colors by the respective color swatches.

Applying feature extraction to foreground

By default, spectral feature extraction is applied to all image pixels:



perClass Mira 5.0 Documentation

71 / 211

If a pixel classifier is defined, we may focus the analysis only to specific classes by selecting these as

foreground :

Note, that, when applying the visualization only to the foreground, the auto-scaling adjusts the min and max
boundaries based on the foreground pixels.

Colormaps

The color map of spectral feature visualization can be selected using the combo box 



perClass Mira 5.0 Documentation

72 / 211

We may choose from several predefined colormaps or create a custom colormap definition by selecting
New.

For some colormaps, it may be useful to set the background color to avoid confusion. We may do that
using the Background color swatch.

In this example, we set the gray level color map and make the background distinct. This allows us to spot
fine patterns in the foreground more easily.

TIP: You may adjust transparency of the background color in the color dialog using the Alpha channel field.
255 denotes opaque and 0 fully transparent layer.

Example of custom color map definition: Select New in Color map combo box. Define the colormap steps

and colors interactively and name the color map.



perClass Mira 5.0 Documentation

73 / 211

The new color map will be saved in mira.ini file. When clicking on the color map widget, a context menu
provides number of additional options:

perClass Mira represents color maps in a simple string format that cane copied, edited by the user and
pasted back in the application.

The mira.ini file will contain our new color map definition as a text string.

[colormap]

gold="gold;0 0,0,0;0.625 255,240,24;0.829 255,7,52;1 255,255,255;"

The content in double quotes specifies fully the color map. It is a list separating fields by semicolon. First
the color map name is listed. Then, each of the color map steps is defined. Each step contains a 0.0 to 1.0
relative position followed by RGB definition of the color.



perClass Mira 5.0 Documentation

74 / 211

Feature extraction (exporting)
perClass Mira provides numerous ways how to extract and export information from a single or multiple
images. The use case is to define classifier, segment objects or specify regions of interest and export user-
defined features to external file (Excel .xls or XML). This data is the used for custom data analysis or further
research.

Let us walk through a basic example using Feature extraction panel. In order to extract data, we need to
specify

· Where the data is extracted from 

· What pixels are included in the extraction 

· What is being extracted 

In the first example, we want to extract mean spectra from objects. Therefore, we select Mean spectrum
from the Add representation combo box.



perClass Mira 5.0 Documentation

75 / 211

You may select multiple representations  

Select one of more images in Images list and then File  menu / Export and Export region features to
Excel. Note you may also export the same data into XML. That option is more convenient if you wish to
programmatically post-process data analysis.



perClass Mira 5.0 Documentation

76 / 211

You will asked for a name of a file to save. By default, perClass Mira exports to XLSX format. This allows for
more than 256 columns which is useful if we're exporting a lot of features per object, for example mean
spectra. If you prefer the legacy XLS format, you may choose it in the export dialog.

In the screenshot below we can see the structure of the exported data:



perClass Mira 5.0 Documentation

77 / 211

Objects of each selected image are described by rows. For each object, we can see the scan name 
followed by an object name. When exporting object segmentation, the object name is automatically
assigned in the segmentation procedure. When exporting content of user-defined regions, the region name

is used. This can be user-assigned. For each object, its bounding box  and per-object decision 

is provided.  The Content present column shows whether there is content represented in this
object/region and if so, how many pixels. When exporting objects, the content is always present. When
exporting regions, this may not be the case.

Finally, the section contains the exported data. In our case, the columne correspond to individual
wavelengths of the mean spectra extracted for each object.

Extracting multiple features

We may specify multiple features to be extracted from each object/region.

Say, we wish to extract two spectral indices and some shape representation of each object. We have

defined two spectral indices. We need to select a specific index and then choose the desired

reprensetation in the Add representation combo to include it in the list .



perClass Mira 5.0 Documentation

78 / 211

Available feature types
· Mean spectrum - mean spectrum computed using all pixels specified
· Spectral feature histogram for the selected spectral feature. The min and max boundaries, defined in

the Visualization panel, are used and split into 20 bins.
· Spectral feature mean for the selected spectral feature
· Foreground pixel count
· Class fraction for the class selected in the Class list
· Regression output for the selected regression variable
· Object count within the region
· Object shape: Feret diameter - shape representation providing minmum and maximum caliper

distance for the object mask
· Object shape moments - a set of 7 Hu shape moment invariants and an object eigenvalue ratio
· Object shape circularity describes how far from a cirle is certain object shape. Three features are

provided, namely Circularity, the Area/Perimeter ratio and the Perimeter.

In our example, we defined the following features:

Below screenshot of the exported Excel file with indicated 5 feature groups.



perClass Mira 5.0 Documentation

79 / 211

Extracting from region grid

In some applications, we may wish to extract data from user-defined regions. For example, in plant
phenotyping, each plant seedling may be defined by a region. In perClass Mira, we can use the region
annotation to drive feature extraction. The advantage of featue extraction from regions is, that we may
detect absence of data in a cell (for example, when the seed did not germinate).

When using regions for feature extraction, we have few options how to define what pixels are included in
the processing:



perClass Mira 5.0 Documentation

80 / 211

The option simply includes all foreground pixels within the region. The option only considers the
object pixels. Therefore, pixels of small objects (with size smaller than the defined minimum object size) are

not included. Finally, the option includes only pixels of objects with cetroids within the region. This
excludes e.g. a leaf extending from a neighboring germination cell into our region.

Defining region extraction template

If the regular region grid is applicable to multiple scans, we may set one of the images with the desired
region definition as a template.Select the Set image as region template in the Images context menu. The
image is then marked with the light blue/cyan color.

The Location in Feature extraction panel can then be Fixed by template regions.



perClass Mira 5.0 Documentation

81 / 211

The same set of regions from the template image is then used when exporting data. Only one template can
be selected in a project.

Exporting into XML

When exporting into XML using File / Export / Export region into XML menu command, we obtain an XML
file with the following structure:

The section lists the features (representations) used. Then, for each image , each object is

described with extracted data for each representation .

Regression
Regression modeing allows us to estimate numerical quality parameters from spectral data. For example,
we may wish to estimate sugar content in a tomato or mixing proportion of powders. In perClass Mira,
regression is performed at object level. Therefore, we need to define pixel classifier and one or more
classes of interest. Then, we can assign external numerical values to each object and build a regression
model. This model is then applicable to objects detected in a new image and can provide e.g. an estimate of



perClass Mira 5.0 Documentation

82 / 211

sugar content per tomato.

In this example, we use the powder data set with vials containing mixtures of two powders, namely flower
and soda. Our goal is to train a model that will be able to estimate the mixing propotion for a new powder
mix.

We have loaded the first scan with powders:

Step 1: Pixel classification

In the first step, we create a pixel classifier. We only care about good wuality segmentation of the powder
content at this step. In our example, we define classes of background, paper label, vial and powder. Our
classifier decisions look like this:



perClass Mira 5.0 Documentation

83 / 211

Step 2: Object segmentation

In the second step, we create an object segmentation. We flag the powder class as foreground and click
on Objects to perform the segmentation.

You may use more then one foreground class in regression. For example, you may build a model with
separate pixel classes for white and dark grapes, flag both as foreground and use both in regression
modeling.

Step 3: Object annotation

In the third step, we annotate individual objects with numerical values denoting the true mixing proportion of
powders. We use the following image describing the ground-truth:



perClass Mira 5.0 Documentation

84 / 211

For each powder object, we add a single number that corresponds to the percentage of soda in the sample.

We can add an annotation from Regreesion menu with Add or update point annotation command:

More convenient is to use the keyboard shortcut. We position the mouse pointer on top of the desired



perClass Mira 5.0 Documentation

85 / 211

object and press P (for point). A dialog will appear:

We may directly type in the numerical ground truth value, in our case 20 and press Enter twice (the first
time to confirm entering the value, the second time to confirm the dialog):

A new point annotation will appear in the image positioned on our original mouse pointer location

Each point has a unique number in the project which is assigned automatically. We may move the point
around. By doible clicking the point, we may edit the attached values.



perClass Mira 5.0 Documentation

86 / 211

In our example, we fill in mixing proporttions for all objects:

Step 4: Regression modeling

In the fourth step, we will build a regression model. We open the Regression panel (if not visible, enable it
in the Window / Panes menu)



perClass Mira 5.0 Documentation

87 / 211

We can now perform regression Model search using the button 

Similarly to the classification, the regression model is automatically built and the results are reported in the
Regression panel:



perClass Mira 5.0 Documentation

88 / 211

Specifically, the regression plot will show number of red points . Each point corresponds to one
object. The red color denotes training objects.

Step 5: Defining test data set

Similarly to classification, in regression modeling it is very important that we build sufficiently large and
representative test set. We need the test set to estimate performance of our regression model on example
unseen in its training.

In perClass Mira, test flag applies to entire images. Therefore, we need to include at least one more image
and annotate its objects with the numerical gound truth.



perClass Mira 5.0 Documentation

89 / 211

We have added a new scan using the context menu in Images list and Add images to project... command

. We apply the classifier and annotate the new objects with the respective ground truth taken from
our external annotation source (not shown). We follow the process in the Step 3 to annotate the new

objects. Finally, we flag the new image as test via the context menu and Flag image as test command .
The image color will change to green to indicate its test status.

We can now rebuild our regression model by pressing Model search in the Regression / Model tab :



perClass Mira 5.0 Documentation

90 / 211

The red points do not change, because identical information is used in training. However, we will see a new

set of green points referring to our new test objects. 

Step 6: Improving regression model

There are number of ways we can understand performance of a regression model and improve it.

In order to understand performance, we can
· Visually judge regression results in the regression plot
· Inspect number of commonly used performance measures
· Use the outlier plot visualizing difference of the data from the regresion model (for any any detected as

it does not need ground truth)
· Use the error plot to visualize differences of estimated values from the ground-truth

We may improve the regression model by
· Using only subset of spectral bands
· Using specific data preprocessing
· Curating the training set by removing suspicious samples or outliers
 

Regression plot

Regression plot serves for quick visual overview of the regression model performance. In the X-axis, the
ground-truth for each annotated point is given. The Y-axis represents the estimated value. Red points
correspond to the training set and gree to the test set.

When hovering over the plot, the details of the closest point are displayed in the status bar .



perClass Mira 5.0 Documentation

91 / 211

We may jump to the scan of the nearest point using the context menu and Got to the scan of the point
command:

Performance statistics

The Statistics tab provides a summary of the most common performance measures. Each measure is

estimated on the training set and on the test set .



perClass Mira 5.0 Documentation

92 / 211

The Acceptance column provides user-adjustable acceptance criteria for selected measures.  The color of
the performance measure reflects the acceptance status. For example, when we set the acceptance for
correlation to 0.95, the accepted status in green and not-accepted in red will update.

Performance statistics may be copied out as text by selecting specific cells in the table and using Copy
statistics as text command. These values can be directly pasted into Excel table.

TIP Complex cross-validation schemes are easy-to-perform in perClass Mira using the Cross-validation
tool



perClass Mira 5.0 Documentation

93 / 211

Outlier plot

The Outlier tab visualizes Outlier score for each object. It reflects the distance from the current regression
model. 

In the following example, we can see the most outlying object is the P14 indicated in the status bar and
in the image by arrows.

Note, that ground truth information is not needed when computing the outlier score. Therefore, it may help
us to understand any new observations.

Error plot

Error plot visualizes the difference between the ground-truth and the estimate value. Similarly to the Outlier
plot, the samples are sorted displaying all training samples and then test samples.



perClass Mira 5.0 Documentation

94 / 211

Context menu in the error plot provides commands to jump to a scan of a specific point, automatically
scaling the plot axis and copying the plot as an image.

The example below originates from a different real-world project. It shows that we may easily spot
systematic errors do to strong grouping information presented in the error (or outlier) plots. The groups with
higher error may refer to different fruit varieties, producers, processing setting and similar.



perClass Mira 5.0 Documentation

95 / 211

Regression using subset of bands

By default, all available spectral bands are used when building the regression model. Similarly to
classification, we may precisely control the band subset.

In this example, we use Pixel visualization of the regression output to show that there is some issue with our
model when using the full spectral range:

When we explore individual spectral bands, we can see that several first bands is highly noisy (not shown
here) and the few last bands contain strong image artifacts:



perClass Mira 5.0 Documentation

96 / 211

We may remove the bands at the start and end of the spectral range in the Spectra plot...

and retrain the regression model using the Retrain button . We may observe that the Regression plot

shows improved performance and pixel regression output lacks any artifacts.



perClass Mira 5.0 Documentation

97 / 211

Regressor and classifier band subsets

In perClass Mira, we may use a separate band subset for the classifier and for the regression analysis.

The context menu in the Spectra panel shows the two commands that allows us to select the bands in the
spectral plot based on the subset used when the last classifier or the last regression model was trained.

Preprocessing

perClass Mira offers user-defined spectral preprocessing. This means that object spectra are not used as
is by the regression model but filtered. Three filtering methods are provided:



perClass Mira 5.0 Documentation

98 / 211

· Smoothing
· 1st derivative
· 2nd derivative

Each of the methods can be applied at a different spectral filter window size.

Preprocessing is set using the Preprocessing button  in the Model tab. When selected a dialog 
will appear where the preprocessing method can be selected from a combo box.

After confirming the dialog with OK button, the preprocessing is set and the mode needs to be retrained

. It is recommended to run full Model search and not Retrain after changing the preprocessing
setting.



perClass Mira 5.0 Documentation

99 / 211

In general, we may say that smoothing improves regression if the data set suffers significant noise and the
first derivative emphasizes the change of spectral change. However, it is not possible to say which method
will work best without proper testing.

Additional regression tools

Model search versus retraining

Similarly to classification, regression modeling offers two ways how to build a model using either Model
search or Retrain buttons.

The Model search employs search for optimal complexity followed by model trainig. The Retrain command
only retrains the model using the last selected modeling scheme.

General recommendation is to use the Model search in case of large changes. For example, when we
select a different preprocessing or different set of spectral bands it is better to perform full model search. If
only a small change to our data set is introduced, for example, when we investigate impact of a potential
object being removed, Retrain is more convenient as it reflects impact of only the single change made.

Applying to new images

The regression model can be applied to any scan (with or without ground truth) by selecting the scan 

and pressing the Apply model to this image button  in the Regression / Model tab. The entire
processing pipeline is applied to the scan. This means, that the pixel classifier produces decisions, objects



perClass Mira 5.0 Documentation

100 / 211

are segmented and a bounding box is displayed for each object showing the estimated regression
output.

The Output panel shows detailed information on regression output. For each object a cetroid, size,

bounding box and the regression output  are given. In addition, an outlier score is provided as
well. Low value of the outlier score (compared to training examples) means that the sample is similar to
training set where the model was trained. High score indicates strong deviation from the known training
examples. For training and test examples, the outlier score is also displayed in teh Outlier plot.

In the following example, we apply the regression model trained on soda/flour mixture to a scan containing

also a vial with salt :



perClass Mira 5.0 Documentation

101 / 211

The corresponding object 007 information is ightlighted with shows that the outlier score is >500.0
while the other samples show the range of 3.0-12.0.

Pixel visualization of regression output

When a regression model is built, we may apply not only at object level but also at pixel level using the

Regression toolbar button 
The pixel visualization of regression output allows us to understand inhomogeneities within the objects and
spatial distribution of the modelled phenomena.

The display shows only the foreground pixels. The Visualization tab provides number of options to
fine-tune the rendering of the estimated output.



perClass Mira 5.0 Documentation

102 / 211

In the following example, we stretch min and max values of the rendering either via edit boxes or
by a mouse-wheel in the left-lower or right-upper corner of the regression plot, respectivelly:

Before stretch:

After stretch:

Note, that the floating point regression output does not change, we only affect its rendering via the specified
colormap and visualization settings.

For more information on colormap control, see the description in the visualization section.



perClass Mira 5.0 Documentation

103 / 211

Spectral plot

Spectral plot displays information on labeled data across all spectral bands. The horizontal axis shows
wavelength in nm. The vertical axis the pixel value. For the sake of image interpretation it is recommended
to use data converted into reflectance. In perClass Mira, specific project types correct raw data into
reflectance using whie and dark reference scans. Working in refelctance makes models more robust
regarding illumination changes.

The band widget under spectral plot shows individual spectral bands available in all images currently
loaded in project. perClass Mira requires that all images use the same spectral bands/wavelength definition.

Class-specific display

For each class with labeled samples, spectral plot provides a mean spectrum. By default also the min and
max values per band are shown. The intention is to display extra information on variability of spectral signal
per class. The min/max spectral range per band may be disabled in the context menu:



perClass Mira 5.0 Documentation

104 / 211

Display range and scaling

The vertical axis spectral values are by default set based on the first image loaded so that the most data is
visible.

By default, manual image visualization mode is active where the spectral value range, defined by the
spectral plot, is applied to all images. This means that switching between images, we see the same range
and the gray value (for Band display) or RGB value (for pseudo-color preview) represent the same value in
the data.

We may interactively adjust the bounds of the display value. This can be done either via the mouse wheel
when the mouse pointer is close to top/bottom of the spectral plot or by a click and drag operation.

Alternatively it is possible to precisely define the numerical display values from the context menu:



perClass Mira 5.0 Documentation

105 / 211

Alterrnatively, we may enable the automatic stretch of display range. This mode stretches min/max of the
spectral plot and hence image display specifically for each image. This is useful to always "see" meaning
ful content in each image irrespective of its overall brightness or darkness. However, it is important to keep
in mind that a the same gray value or color in two images represents different raw spectral or refelctance
values.

The Auto stretch mode is enabled by the checkbox in the context menu. The display stretch is based
on image content keeping certain percentile of image values in the view. This may be controlled using the

slider in the context menu.

Adjusting display manually disables the Auto stretch function.



perClass Mira 5.0 Documentation

106 / 211

Band selection

Under the spectral plot, you may find the band widget providing user-defined band selection. For each
spectral band in the data, we can see a corresponding round point. By default, all available bands are
selected (green) and, when a classifier or regressor are trained, used for building the model. 

Spectral plot provide several commands allowing us to effective define and work with band subsets. Some
of these are highlighted by the red rectangle in the context menu screenshot:

Manual band definition
Bands may be selected / deselected by clicking the individual round points in band widget. In order to
select/deselect larger number of bands, we may use "painting" i.e. click and drag. The status of the first
clicked band defines the action - either select or deselection of all visited bands.

Note, that the number of selected bands and the total number of bands are provided to the left of the band
widget:



perClass Mira 5.0 Documentation

107 / 211

Band selection by commands

We may select and deselect all bands using the Reset band selection and the Clear band selection
commands in the context menu.

In order to have fine control on specific band selection, we may use the Set band subset command from
the context menu. Once selected, a dialog box appears that allows us to precisely define what bands should
be added or removed:

By default we may specify band indices. Alternatively, by selecting Wavelengths the selection happens on
wavelength values in nanometers.

If we provide a range of bands, for example "10-30", we enable all bands starting with the 10th and ending
with the 30th band:

We may provide multiple regions at once separated by spaces. For example "10-30 35-42 45" will lead to
these three regions:



perClass Mira 5.0 Documentation

108 / 211

The default operation is to only enable the specified bands removing all previous state. Sometimes, we may
wish to add or remove bands from the current selection. This is possible by prepending our specification
with + (for adding) or - (for removing):

For example, selecting the Set bands command again and filling in "+3-5" will append three more bands to
the current subset:

Sometimes, we may wish to select bands with a regular step. This is possible with "each X" syntax. For
example, using "each 3" we get:

Band subsets used by models

When training classification or regression model, the currently selected set of bands is used.

Subseqent changes in the band subset widget do not impact bands of the model, unless we retrain it.

We may, however, anytime return to the band subset used for the current classifier or regressor using the
respective commands in the spectral plot context menu:



perClass Mira 5.0 Documentation

109 / 211

Frame panel
Frame widget serves for detailed visualization of spectral cubes in both spectral and spatial direction. Its
primary use is in live acquisition mode for line-scan applications. In this setup, it provides a logical view of
the data transfered from a camera i.e. spectral frames. Each frame provides spectral responses for a line
of spatial pixels. Frame widget is useful during data acquisition as it helps us to understand camera focus,
visually judge scan borders, dead pixels or other artefacts.

Frame widget is enabled also for introspection of already loaded current spectral cubes in line-scan use-
case (BIL data layout in ENVI format). Note the important conceptual difference: While in live acquisition
mode, the frame widget shows raw spectral frames being acquired, in the off-line mode it visualizes content
of the current cube that is typically already corrected into reflectance.

In the following screenshot, the frame widget shows one spectral frame in a loaded image. The area 
shows the frame content. Horizontally, the spatial pixels are provided. Vertically, the spectral information is

displayed. The colored lines in the frame widget are then further visualized in the spectral plot and the
spatial plot. The corresponding band and pixel indices are located on the top of the frame panel.



perClass Mira 5.0 Documentation

110 / 211

Context menu on the plots exposes number of options:

Switching between default dark and white background. White background may be beneficial when
using the spatial profile plot to judge camera focus on a structured pattern

Several options for plot scaling. The Auto scale provides automatic stretch based onthe data. Set
range from... options allow the user to set axis span from project, acquisition (frame) or saturation.

The plots can be copied to clipboard as an image



perClass Mira 5.0 Documentation

111 / 211

Stage panel
Stage panel provides full control of perClass Stage linear lab scanning device.

Connection

The stage needs to be connected to perClass Mira instance using the Connect button . This button is
changed into Disconnect when the stage is connected.



perClass Mira 5.0 Documentation

112 / 211

Status and speed

The lower section of the Stage panel shows status information (Ready, Moving, ...), indicators of the
current position and speed and the speed slider. The slider can be used to adjust the speed also during
stage movement.

White and scan area controls

Above is located the control of white and scan areas . For the white reference, we can set the start and
end position. These are meant to represent the locations where the white reference is fully in view. For
each position, there is 
· A spinbox control allowing the user to edit position manually
· A pin button to use the current stage position 
· and the button to move the stage to the set position

The Center button in between white start and white end controls allows the user to move the stage to the
center of the white reference.

The scan area start and end can be set with the respective control. This is useful when samples do not
cover the entire 400 mm of the stage table.

By default, the stage returns to home position after the scan is acquired as quickly as possible. In some
cases, the samples may be displaced by the fast movement. The Limit travel speed checkbox serves in
such situations to use slow speed also for this return movement. It is off by default.

Movement controls

The movement control is located in the middle of the Stage panel. The buttons allow user to perform all
basic movements such as:
· Go to start / end
· Move right / left
· Stop

The Move right / left buttons need to be pressed and held to continue the movement.

TIP Note the label dispaying keyboard shortcuts for the stage movement: Alt + right / left for normal
movement and Shift + Alt + right / left  for slow movenent. These shortcuts provide the easiest way to
control stage position.

Stage buttons

Finally, in the top area of the Stage panel, we find the stage button configuration . These buttons can
invoke user-configurable commands.

User-defined stage buttons

perClass Stage comes with three user-configurable buttons: Namely, the green A, yellow B and the red C
buttons.



perClass Mira 5.0 Documentation

113 / 211

The following stage commands are available:
· Cycle - cycle the entire table length (0-400mm)
· Cycle scanning area - cycle the scan area defined in the edit boxes. This is useful if your sampels do

not fill the entire length of the table
· Move left / Move right / Stop - movement commands. Note that they are also always present under

the programmable buttons
· Move to start / Move to end
· Move to center - This command is useful to "park" the table in the central position before dismantling

the stage
· Move to white reference
· Scan and record
· Increment scan name - Increment index in the currently focused scan name part (underscore-

separated parts, ending with number). See more information on storing meta-data information in scan
names.

TIP Camera buttons are mapped to the numerical keypad keys -, + and Enter. This makes it easy to invoke
button commands without looking at the keyboard or screen. Mnemnonics: the mapping is top-to-bottom in
the same way as the A,B,C button orger in the Stage panel

Commands set by the user are restored in future sessions.

Slightly different command sets are used in Camera scan mode and belt / waterfall mode.

Camera
Camera panel provides control of acquisition from a connected device. In order to use a camera, it is
necessary to start the project with the respective acquisition plugin. Each such project is of "perClass"
type. This is a major change from pre-4.2 perClass Mira releases where vendor specific projects provided
acquisition control.

The Camera panel displays speed information and plot with a separate line for the camera itself in cyan,
"classifier" meaning full processing pipeline in red and the total processing time in green.



perClass Mira 5.0 Documentation

114 / 211

Camera controls

Camera controls are:

· Exposure (integration time) in miliseconds. Exposure-control of the camera is assumed where
exposure settings influences possible frame rate settings.

· Frame rate in frames per second.If framre rate can be controlled by the user, it is provided
together with the maximum possible frame rate. For some camera types, user cannot change the frame
rate. Then, high default frame rate value is provided indicating that the device runs always at the
maximum achievable frame rate for given exposure time.

· Band control allows the user to select specific sensor band used to display data layer in the data
visualization

· Maximum raw display value control sets the limit for raw data visualization. It is a zero-based value.
By default it is set to the maximum raw value - 1. When displaying image content for a single band, this
setting makes it possible to visualize saturations by the red/yellow pattern.

· Indicator of dropped frames. In cases, where the data processing cannot keep up with the camera
acquisition, frames may be dropped. This counter is reset by starting each acquisition. Note, that some
cameras may be set to buffer frames that cannot be processed internally. In such setups, frame
dropping occurs only when the internal buffers are filled.



perClass Mira 5.0 Documentation

115 / 211

Adjusting scan quality

perClass Mira provides several simple-to-use tools that allow the user to quickly adjust the scanning process
to produce high-quality scans.
These include:
· Adjusting focus
· Auto-exposure maximizing dynamic range of the scans
· Making sure line-scan mages provide square pixels

These tools are accessible from the respective tabs in the Camera panel

When using perClass Mira Stage, these tools rely on the white reference bar with a structured pattern



perClass Mira 5.0 Documentation

116 / 211

printed on its opposite side. It is possible to use the quality tools with custom white references or structured
patterns.

Optimizing focus

In order to adjust camera focus, we need a structured pattern showing sharp edges.

Starting the focus adjustment
By default, the focus algorithm will assume that the structured pattern is placed under the camera.

If we have already setup white reference start and end positions in the Stage panel, we may also enable the
Move stage to pattern checkbox. When pressing Start, the stage will first move to the pattern before
applying the focus processing.

Adjusting the focus
When we click Start button in the Focus tab, the semi-automatic focus adjustment algorithm will start. It is
semi-automatic, because it relies on the user to adjust camera focus (or camera height) to provide direct
feedback. 

Recommended screen setup, when adjusting focus, is depicted by the following screenshot. The camera is

out-of-focus, as we can see in the live view . It is recommende to view also the Frame panel and

enable white background in its bottom, spatial, plot via the right-click context menu. The focus



perClass Mira 5.0 Documentation

117 / 211

adjustment algorithm provide user-feedback through messages displayed next to the Start / Stop button

.

At the start of the session, the algorithm needs few seconds to estimate signal characteristics. Then, the
user may start adjusting the camera focus. The feedback will be privided to either continue turning the
focus ring of the objective lens in the same direction, or go back. Eventually, it will be indicated that the
optimal focus is reached.

TIP The spatial plot of the Frame panel provides additional visual feedback to the focusing process.

The user may also interrupt focus adjustment any moment with the Stop button.

Auto-exposure

Auto-exposure is used to maximize camera exposure for the given illumination conditions. In this way, the
dynamic range of the resulting data is optimized.

The auto-exposure tool expects white reference.



perClass Mira 5.0 Documentation

118 / 211

Starting the auto-exposure tool
By default, the auto-exposure tool assumes that the white reference is placed under the camera. Enabling

the checkbox , the stage will first move to the center of white reference, as defined by the white start
and end positions in the Stage panel.
The auto-exposure tool will increase exposure until the maximum shite response reaches a specific

percentage of saturation. By default, this is set to 90% in the spinbox . This is to avoid saturated data
for bright signal.

The auto-exposure process is started by the Start button .

Accepting auto-exposure value

After the auto-exposure process is finished, the tool provides the estimated optimal value . Note, that

the user needs to explicitly confirm to use the value by clicking the Apply button . Without this
confirmation or by clicking the adjacent Cancel button, nothing will be changed. When the user presses the

Apply button, the estimated value will be entered in the Exposure edit field .

NOTE Adjusting camera focus will render existing dark and white references inapplicable. This is indicated
in the Recording panel by red message next to the references. It is user responsibility to mak sure the
references are re-acquired if exposure settings change.



perClass Mira 5.0 Documentation

119 / 211

Square pixels

Square pixel tool allows us to optimize scanning speed of a line-scan camera system to assure identical
true dimensions of image pixels in direction of movement and across the table/belt.

It assumes that a structured pattern is placed on the stage table and its start and end positions are fixed in
the Stage panel (using the controls for white reference).

Starting the square pixel tool
When the start and end positions of the structured pattern are adjusted in the Stage panel, press the Scan
button.



perClass Mira 5.0 Documentation

120 / 211

Square pixel tool feedback

In the screenshot below, you can see that our stage speed was set to 32 mm/sec . The acquired

structured pattern image shows significant distortion of the circle shapes. The estimated excenicity is

displayed at  and the proposed solutions in terms of optimal stage speed or camera frame rate at .

The user needs to choose the desired solution and explicitly confirm it by pressing the Apply button.

Confirming the correctness of the solution found.
When re-running the tool once more, we can observe (below), that the speed was changed to 17 mm/sec

, which leads to proper circular shapes of the scanned pattern . The newly estimated excentricity

is now close to 1.0. We may either press Cancel or simply leave the Square pixels tool to keep this
setting.



perClass Mira 5.0 Documentation

121 / 211

TIP Should the square tool not find the desired solution, it may be due to blur, low scan resolution or its
inability to segment the structure pattern bar from the background. In such cases, you may use any other
circle pattern printed in higher resolution.

Camera modes
In perClass Mira 5.0, camera may be operated in one of three modes:
1. Belt view (default) - The image stream is moving upwards simulating the view on top of a conveyor

belt
2. Waterfall view - The image stream is moving downwards. When reaching the bottom of the screen, it

starts again from the top.
3. Scan view - A pre-allocated scan buffer is filled with the data. When scanning stopps, the user may

decide to save the data or discard it and re-take the scan

Camera mode can be changed by clicking small arrow next to the Camera toolbar button.

Apart from different visualization, the fundamental difference between these modes lays in the way how
data is recorded. 
In the belt and waterfall modes, the data from a line-scan camera is directly recorded to disk. In the scan
mode, data is filled in a buffer and the saving to disk only happens when user decides to do so. This
separation between acquisition and saving enables several new functionalities coming in perClass Mira 5.0
such as:
· re-taking the scans - this leads to cleaner currated data sets



perClass Mira 5.0 Documentation

122 / 211

· scan compression - significantly loweing data storage requirements for large projects
· high-speed acquisition of training data (practically tested up to 2m/sec speed on an industrial belt)

Belt and waterfall mode

Belt and waterfall represent identical scan acquisition logis. They differ only in the way live data is
visualized.

Data acquisition
When a camera is initialized, data acquisition can be started using the Play button and can be paused by
the Pause button. Recording, started by the Record button happens directly to disk.

Live data visualization
In the Waterfall mode, the data moves downward. When reaching the bottom of the screen, data
visualization restarts from the top of the screen. This approach can visualize per-pixel decisions but not
per-object decisions, that are finalized after the object is already rendered.

In the Belt mode, live data moves upward simulating the top view of an industrial conveyor belt. In this view,
perClass Mira can visualize both per-pixel and per-object decisions.

Due to their continuous nature, these modes enable live demonstrations of spectral data
processing whether on the stage or industrial belts.

Scanning process on perClass Stage
In the belt and waterfall modes, the scanning and recording process are united. The user initiates Scan and
record command that starts both the movement of the stage and recording to disk. Recorded scan cannot
be "undone" as it is already stored in a file. In order to remove such as scan, the user needs to remove the
corresponding files in addition to removing a scan from project with Remove images command in the
context menu of the Images list.

Scan mode

The Scan mode separates acquisition of a scan from its saving to disk. This makes line-scan cameras
operate in a similar fashion to snapshots and standard machinve vision systems.

Scan mode can be enabled by clicking the small arrow adjacent of the Camera button or by the Camera
menu:



perClass Mira 5.0 Documentation

123 / 211

 

Data acquisition
When a camera is initialized, data can be acquired by clicking the Scan toolbar button or the Scan button
in the Camera panel. Data is read into an internal buffer. The user can then decide whether to save the
data using the Save button or to discard and re-take the scan.

  

Live data visualization
The scan mode shows data acquisition only during the scanning, not continuously like the belt or waterfall
modes. Note, that scan mode is not very useful for live demonstrations as it stops when the internal data
buffer is filled. For continuous demonstrations, use belt or waterfall modes.

Scanning process on perClass Stage
Scan mode brings significant benefits when scanning multiple objects in order to build large training data
sets:
· Scans can be discarded and re-taken. This makes it easy to acquire high-quality curated data sets.
· Scans can be compressed by preserving only foreground objects of interest, not background.
· Scanning in memory enables high-speed acquisition of data on top of industrial belts. We have tested

acquisition up to 2m/sec belt speeds on common hardware.
· Scans can be overwritten. When saving the scan while the same scan file exists on disk, user is

prompted with a dialog requesting explicit confirmation whether to overwrite the existing scan or not.

TIP When using the directory-specific references, only the scan is overwritten, not the reference files. If
camera settings such as exposure changed since the directory-specific references were recorded, this
may lead to inconsistent scan. When using directory-specific references, do not change exposure when
saving data into the same directory.

Stopping acquisition in scan mode

In the scan mode, the user has several ways how to stop the scan. These can be controlled by the settings

 in the Recording panel:



perClass Mira 5.0 Documentation

124 / 211

The user may end the scan at the end of the scan area, defined in the Stage panel.

An alternative is to stop the scanning when an object is detected:
· When working with perClass Stage, this option significantly simplifies our scanning work-flow when

acquiring training data sets. In this situation, we wish to have each object saved into a separate scan.
Because the scanning is stopped by object detection, we can also place objects anywhere on the
stage. 

· Stopping on object detection enables also enables comfortable data acquisition on top of industrial
belt systems.

In both of these scenarios, the extra option trims the resulting scans to avoid extensive background
areas.

Naturally, the scanning is also interrupted if the scan size reaches the pre-allocated number of frames 
or the stage table reaches its maximum position.

At any moment during the scanning, user can also stop the acquisition using the Stop toolbar button

Scan compression
Scan compression is a major new functionality brought by perClass Mira 5.0. In projects developing robust
models for classification or quality estimation, large data sets need to be collected with many objects
(pieces of fruit, industrial parts or sorted product). Such data sets, collected on stage of industrial belts
occupy significant amount of disk space where majory is the stage table ot belt background, not data of
interest.

perClass Mira 5.0 make it possible to easily define the data of interest to be stored when saving scans to
disk. This is enabled by the new Camera Scan mode acquiring data to memory before saving to disk.

Scan compression in perClass Mira is fully lossless. This means that data is not anyhow altered,
reduced or changed. 



perClass Mira 5.0 Documentation

125 / 211

Scanning with compression is also very easy to use. Before saving the data to disk, user can mark areas
that will be preserved. Foreground definition can be automatically applied by a object segmentation defined
in the project. User is always in full control deciding what exactly is saved and preserved. The scanning
process is streamlined so that user can accquire large collections of high-quality samples in minimum
amount of time while significantly reducing disk storage.

Example of using scan compression
In the camera Scan mode, we acquire a scan. By default, when saving the scan using the Save button

in the Recording panel or in the toolbar, the entire scan would be stored on disk. This is indicated by

the scan size widget in the right half of the Recording panel. Note that these controls are available only
in the scan mode, not in the belt or waterfall mode.

Defining foreground mask manually

User may paint in the scan and define foreground content to be saved . The scan size widget will show

in green the data size actually saved to disk as a fraction of the total scan cube size, which is
displayed in red.

Similarly to normal label painting, the yellow foreground mask can be removed when holding the Shift key.
Size of the brush used can be adjusted by the Brush toolbar button and its transparency by the Alpha
button.



perClass Mira 5.0 Documentation

126 / 211

Note, that the compression preserving only fofeground can save very significant amounts of disk space.

Compressed scans in the workspace

When a compressed scan is saved, perClass Mira switches to the Images mode , as usual. The area

, previously highlighted by the yellow label, is fully preserved. The scan geometry is also fully

preserved. However, the remaining area  is rendered in cyan color. This part of the scan does not
contain any information and cannot be used in any data analysis in perClass Mira environment.

Compressed scans on disk
When saving the data, perClass Mira stores the scan in a file with scan1.hdr header and scan1.pcz
compressed file. This is naturally not a standard ENVI cube but requires perClass Mira to be read.

The following screenshot from Windows Explorer shows several scans. The scans 1 and 2  were

compressed while the scan3 was not. It is, therefore, stored in the standard .pcf file which is a normal
ENVI cube.



perClass Mira 5.0 Documentation

127 / 211

Automatically applying compression

Scan compression can be applied in an automated way to new scans. This only requires the user to
train a classifier able to highlight areas of interest and flag the relevant class as foreground.

Enabling automatic foreground mask for scan compression

In our example, we created background and object classes on the saved scan, trained a model using

Model search. The following screenshot shows the Object view with the object of interest 
segmented. 

When a classifier and object segmenter are available in perClass Mira project, acquiring a new scan in
scan mode will automatically highlight the foreground in yellow



perClass Mira 5.0 Documentation

128 / 211

Applying foreground mask automatically
We have shifted plastic tiles on the table and acquire a new scan. In the screenshot below, we can see that

the foeground area is now automatically highlighted in yellow. We also can use the toolbar slider 
to dilate the foreground mask out from the objects. In this way, we will also save some of the bacground.
This is useful so that we will be able to train good models along object boundaries.

Adjusting the automatic mask
The user can anytime paint in the mask. In this way, interesting areas to be preserved even if not
highlighted by the the classification model.

Other mask controls are available in the toolbar:
· Show mask toggles mask visualization on and off
· Draw mask is enabled at any moment that the user paints the mask manually. Disabling it removes only

the manually painted parts, preserving the automatic model decisions
· Object mask re-applies the model to the scan, re-creating the mask
· Clear mask removes the mask

Exporting compressed scans as ENVI

Compressed scans in .pcz format cannot be loaded to other software packages as they are not ENVI
cubes. It is, however, possible to batch-export any set of compressed scans as ENVI cubes that can be
loaded in other data analysis tools.

Use File / Export / Export cubes command to export compressed cubes as ENVI files.

Recording panel
Recording panel provides control for recording references and data. By default, perClass Mira imposes
data correction work-flow where dark and white references need to be acquired before data is recorded.
The motivation is to make sure that modeling is performed not on raw but on reflectance-corrected data.
This makes models robust to illumination changes.



perClass Mira 5.0 Documentation

129 / 211

The radio button group allows selection of different correction work-flows. 
· The default "line (non-uniformity)" means that full frame dark and white references are used to correct

each pixel in the image. This is a recommended approach for most applications.
· The Point referering means that we may define a scan area used to compute average white and dark

spectrum that will be used for correcting all pixels. This is needed when white reference cannot cover
the entire field of view of our sensor (for example in remote sensing or outdoor applications)

· The None setting disables referencing workflow. The acquired data will be used as is. This makes the
developed models highly sensitive to illumination changes. It is generally useful only for situations
where the sensor already provides relfectance-corrected data (Cubert, Imec) or where we wish to
analyze raw data content. When selecting this option, recording tab is directly enabled.

The White and Dark references can be acquired from the sensor by pressing the respective buttons. 

The button Set from scan allows us to set the references from the currently selected image in Images
list. Care needs to be taken that the references of this selected image really correspond to the current
illumination conditions and camera settings.

The combo-box allows us to change the default location of reference files. 

· The directory-specific references are stored only once per entire directory in the files names
whiteref and darkref with the respective extensions for header (.hdr) and data (.pcf) content. This is
advicable in situations where each of our data directories collects strictly only related files from the
same scanning session. The resulting data storage is then cleaner and simpler.

· The scan-specific references means that each scan is accompanied by specific reference files
appending _whiteref and _darkref to the scan filename. With this setting, we may easily mix scans
from different scanning sessions or days in one directory. Disadvantage of the scan-specific
referencing is larger amount of scans in our data storage.

Both approaches can be mixed in our project. This setting only affects the scans to be scanned in the
future, not existing data.



perClass Mira 5.0 Documentation

130 / 211

Acquired references

Once the references are acquired, their time-stamps are and exposure times used are listed.
Note, that references should be acquired using the same exposure as the data. If you change exposure
time, retake the references before acquiring data. When the exposure, set in the Camera panel differs

from the settings stored when acquiring references, the difference is emphasized by red color in .

The Recording tab becomes enabled once both references are available. For the correction work-flow
without references (None radio button), the recording is always available.

Recommended screen setup

Following screenshot illustrates the recommended screen organization for data recording.

Both, the Camera  and Recording panels are available above each other. For line-scan



perClass Mira 5.0 Documentation

131 / 211

recordings, we recommend using also the Frame widget under the data stream.

Note, that as references are recorded in this example, the main toolbar in the Camera mode shows not only

Raw data button, but also Corrected data command .

Setting scan name

Once references are defined in the Correction tab of the Recording panel, the Recording tab is enabled. It
controls directory and filenames for scans to be stored.

The directory button specifies, where the recorded scans will be stored. This directry is identical to the
project "Top-level data directory", that can be set from the File menu or from the context menu in Images
list. The directory may be changed any time. Only the newly-recorded scans will be affected and placed in
the new directory.

TIP: Note, that perClass Mira never deletes or moves any scans. It is user responsibility to perform any
destructive actions on the data, if needed.

The scan field defines the scan name to be recorded. Note the bigger font used for the scan name.
This is because perClass Mira Stage users can fully operate the scanning process using only the stage
buttons at a larger distance from the computer and the screen.

Important: Note that the scan name must be defined, in order to record a scan. When working with
perClass Stage, issuing Scan and Record command will not work unless the scan name is defined.

Making scan names unique upon saving

The Record button  starts the data recording (in Camera belt or waterfal modes). In the scan mode,
this button invokes saving of the data. In any of these operations, we may wish to make the scan name
automatically unique. We have two options:

· Appending a time-stamp 

· Appending an index (to be precise an underscore, followed by an index) . The index auto-
increments after each recording.



perClass Mira 5.0 Documentation

132 / 211

TIP: When recording scans with training examples, it is recommeded to use only examples of one class
and use its name as a scan name. 

Manual incrementing of scan indices
If we wish to increment indices in scan names manually, perClass Mira provide us a very simple by
efficient assitance. If a scan name is a set of letters followed by a number, it is recognized as an
"incrementable" pattern and it is colored in green. Compare the following image with the screenshot above
where the scan name did not end with a digit.

The user may increment the index using:
· Cursor up / down keys
· Mouse wheel
· Stage button assigned to Increment scan name command

Meta-data information in scan names
In larger projects, it is recommended to store different types of meta-data information about the samples in
the scan filenames. It is, for example, useful to distinguish the day of scanning, supplier, fruit variety or
others. The main advantage is that we may easily select images in our project based on these textual
patterns. This helps us to test or cross-validate our models on unseen days, suppliers or varieties.

The scan name widget recognizes underscores as bounday between name items. One item is always
selected. It is rendered in green. Other items are colored in red. We may select the item by clicking or
positioning the cursor. 

Above listed methods of incrementing the scan name then apply only to the current item.



perClass Mira 5.0 Documentation

133 / 211

Exporting
perClass Mira provides number of ways how to export data. Individual export commands are located in
File / Export menu.

The following high-level export options are present:
· Per-image results - for further analysis
· Per-object results - for further analysis
· Extracted features - for further analysis
· Visualizations - for display
· Visualizations as float images - for further analysis / external model training 
· Cubes
· Labeled data
· Regions - connected to Region importing



perClass Mira 5.0 Documentation

134 / 211

Exporting per-image results

The use-case for this export option is analyzing presence of certain important classes in many
images. For example, when detecting whether plants are infected by a disease, we segment a plant out of
background and flag plant parts and infection as foreground classes. This export option allows us to quickly
see whether the fraction of infection among all foreground pixels (representing a plant) is above acceptable
limits.

In order to export results per-image, select desired images in Images list and use the Export per-image
results to Excel command in File / Export menu

The resulting Excel file contains, for each image the pixel count in each class . Note, that
foreground/background object flags are also provided. Additionally, for all foreground classes, their

fractions within foreground are present . 

Exporting per-object results

This export option provides detailed information on detected objects including their position and
per-object classifier decision. The use-case is building object classification solutions, for example, in
sorting and grading applications.



perClass Mira 5.0 Documentation

135 / 211

Exported results provide scan names , training/test status in the project , object size and bounding

box , per-object decision by perClass Mira object classifier  and brake-down of pixel counts in all

foreground classes . The last can be used to define and validate custom object classification rules.

Exporting visualizations

Exporting visualization generates color PNG images with the exact visualization content for all
selected images. The use-case is to batch process large number of data and create visual representation
of a particular solution.



perClass Mira 5.0 Documentation

136 / 211

Select one of more images in Images list and use File / Export / Export visualization... command. A dialog
box appears where the destination directory can be selected or a new one created. In addition, perClass
Mira requests an optional suffix appended to image names. This is useful to distinguish multiple
visualizations on the same set of scans or groups of scans (training, test, specific variety of a product etc.)

TIP: When working with many images, you may export visualizations and then get a quick view on many
images using Windows Explorer view thumbnails feature.

Visualization tips

Highlighting only specific classes of interest

For quick visual identification of specific detections, it is convenient to control alpha layer per class and
make unimportant classes fully transparent. This can be achieved by selecting specific class, using Alpha
toolbar button class and adjusting the transparency only for this class. For stronger visual contrast, you
may also make the background darker by adjusting the top of the Spectra plot.

Exporting visualizations as float images

By export visualizations as float images, we get data (Matlab .mat files) extracted from our spectral
images. The use-case is to define one or more custom feature indices, export the floating point data



perClass Mira 5.0 Documentation

137 / 211

together with precise pixel labeling and perform further analysis or training of external models in Matlab,
Python or other machine learning environment.

In the following example, we defined three spectral indices . We select the scans we wish to process

 and use File / Export / Export visualization (float image). We may then select or create destination
directory. For each selected image a .mat Matlab binary file is created with floating point spectral index
content and separate pixel labels.

Example on Matlab side:

>> ls

.                     ..                    natural_objects1.mat  natural_objects2.mat 

>> load natural_objects1.mat



perClass Mira 5.0 Documentation

138 / 211

>> whos

  Name        Size                 Bytes  Class     Attributes

  cube      640x503x3            3863040  single              

  lab       640x503               321920  uint8       

>> figure; imagesc(cube(:,:,3)')

>> figure; imagesc(lab')

Comments:
· for each exported image a .mat file is present in the destination directory
· each of the files contains a cube and lab variables, respectively
· the cube variable contains a band (3rd dimension) for each of the spectral indices
· note, that we transpose the image content using ' operator to visualize images in the same way as in

perClass Mira
· the lab variable contains per-pixel labels defined in perClass Mira. Class indices may directly to the

class list in perClass Mira. Zero is the "unknown" - such labels are not present.

Exporting cubes

Exporting ENVI cubes provides a convenient way to get simple ENVI cube representation of images in
perClass Mira workspace. The use-case is further analysis of the images already converted to reflectance.



perClass Mira 5.0 Documentation

139 / 211

Upon selecting the export command, we may specify or create a destination directory and specify optional
scan name suffix. This is useful to provide extra information on exported group of images. For example, to
distinguish test scans or specific product varienty.

For each scan an ENVI cube is created saving two files, namely the ENVI data cube with .bin extension
and the text .hdr header file.

Notes:
· Images are exported in exact same representaion as in perClass Mira workspace. This means that, for

project types converting scans on load to reflectance, the exported images are stored as reflectance
(typically BIP layout, float data type)

· For images, that are cropped in perClass Mira workspace, only the crop area is exported, not the full
original image. Therefore, we may use this export type to convenniently focus only on relevant parts of
the scans

· For compressed cubes, non-existent content in the background is replaced by zeros. The data is
exported from the perClass Mira workspace as is. This means that, if the scans are already corrected
into reflectance on load, the reflectance is exported (BIP layout, float data type)

Exporting regions

Exporting regions enables us to store information on Region definition outside of perClass Mira project.
Possible use-cases are:
· performing analysis of object classification results in Excel or other software
· precise definition of regions outside perClass Mira. This is connected to aditional command Import of

regions into perClass Mira from Excel file

Example exporting regions defined on a scan to Excel: In the Regions mode , we can see regions

defined. Note, that one of the regions  has a text note attached.



perClass Mira 5.0 Documentation

140 / 211

After using the Export regions command, we obtain the following Excel file:

For exach exported scan , each region is given including its name , bounding box , class

and optionally also notes

Importing regions

The use-case for region importing is precise definition, for example, when creating regular region grids
in plant phenotyping or using external labeling and annotation sources.

In order to import region definition from an Excel file, use Data / Regions / Import regions menu command:



perClass Mira 5.0 Documentation

141 / 211

Extending our export regions example, we now include an extra note to reg2 region in Excel and save the
file.

· In order to import regions, we need to first remove existing once using Data / Regions / Remove all
regions command (when specific scan or scans to be affected are selected in the Images list). Note,
that this follows general perClass Mira design principle of not destructing any information behind user's
back.

· After removing the regions, we can use the Data / Regions / Import regions command, point to the
updated Excel file

The new region definition now contains text note also for the region reg2. In this same way, we may create
entirely new regions or change positions and class assignmnets of existing ones.



perClass Mira 5.0 Documentation

142 / 211

Exporting label images

Exporting label images provides label masks as PNG files including class names meta-data. This is useful
when using perClass Mira as a precise annotation tool for external machine learning training work-flow.

A destination directory can be selected of created. Optional scan name suffix can also be specified. This is
useful to distinguish different groups of scans, for example, due to their training/test status or product
variant. We may view the exported images conveniently in the Windows Explorer 



perClass Mira 5.0 Documentation

143 / 211

Class name meta-data
The exported images contain class name meta-data. 

Accessing meta-data using TweakPNG
Free TweakPNG utility can be used to view PNG file meta-data: http://entropymine.com/jason/tweakpng/

Accessing meta-data in Matlab

Using imginfo command in Matlab, we can access the meta-data information, stored by perClass Mira. We
need to extract the "OtherText" property:

>> s=imfinfo('natural_objects1.png');
>> s.OtherText

ans =

  3×2 cell array

    'ClassCount'     '6'                                         
    'ClassFormat'    'perClass Mira 1'                           
    'ClassNames'     'Unknown,background,leaves,nuts,shells,wood'

Model testing
Machine learning models are trained on annotated data. In perClass Mira, the concept of testing is strictly
refering to evaluation of model performance on unseen examples. We would like to stress, that data used
for testing should never be comprising the same of very similar physical objects as the ones used for model



perClass Mira 5.0 Documentation

144 / 211

training. 

In perClass Mira, images can be flagged for testing. This means, that any subsequent model retrainning will
not use these images for any of the steps. 

The software also provides extensive support for cross-validation used in model comparison. Cross-
validation splits the data set into trainng and test parts multiple times. Each time, a model is built and the
performance estimated. Eventually, we end up with a mean and standard deviation of model performance.
This simplifies comparison of different models based on statistical significance.

Cross-validation is supported both over images and also over groups defined by file names (for example
over days of scanning, varieties, scanning with replicas and others)

NOTE that flagging an image only does not change already existing models. The user needs to
explicitly retrain a model or perform new model search in order for the new image falgs to take
effect.

Flagging images for testing

Images can be flagged for testing using context menu in Images list and the Flag images as test command:

Selected images will be assigned a test flag which is reflected in their green color:



perClass Mira 5.0 Documentation

145 / 211

TIP: Ctrl+T keyboard shortcut performs the same action.

Note, that the state of the selected images changes by applying this command. Therefore, images that were
already part of the test set will become part of the training set (will loose the green color emphasis).

Additional image flagging commands

Data menu contains several additional commands for image flagging in Image flags sub-menu:

· Selected images may be all flag for training or for testing

· Percentage of of selected images can be randomly assigned a test flag. This is useful to perform
manual cross-validation on a large number of scans. We select all scans (Ctrl+A) and flag random
fraction as test. We rebuild a model and record test set performance. Note, that in order to retrain a
model, we need to have labeled data. Therefore, most of your scans should be meaningfuly annotated
in order to use this manual cross-validation approach.

Cross-validation

perClass Mira provides a convenient Cross-validation tool significantly simplifying statistical validation of
models. 

What is cross-validation?
Cross-validation is a procedure of repeated retraining of a model and re-testing on different fractions of the
data. The goal is to assess variability of model performance on a given problem. Repeated testing
provides us with performance estimates accompanied with their respective standard deviations. Cross-
validation allows us to compare two machine learning models at certain significance level. In other words, it



perClass Mira 5.0 Documentation

146 / 211

allows us to conclude whether one model performs significantly better than other.

Cross-validation in perClass Mira
The cross-validation tool in perClass Mira can support classification, regression, or custom external
analysis work-flows. We will explain Cross-validation tool based on a regression example. We are
estimating mixing proportion of two powders using regression modeling. We have placed the Cross-

validation panel in the center under the image view. On the right side, we have a Regression panel

with results of a model, trained on a set of scans . Note, that three images were manually flagged
as testing. Therefore, we observe three green points in the Regression plot.

For this example, it is useful to clarify the scanning task and the structure of file names. We have a set of
plastic vials with mixed powder. Each vial containing one specific mixing proportion. We scan each vial

alone multiple times. Each time, we record which mixing proportion the vial contains by an integer 

below. The letter denotes which replica scan of the same vial we have acquired. Replicas A, B, and C
mean three repeated scans of the same powder container,

In order to use the cross-validation, we need to make a selection of images. In most cases, we wish to



perClass Mira 5.0 Documentation

147 / 211

cross-validate on all images in the project. Therefore may select all using the Ctrl+A keyboard shortcut.

When an image selection is created, the Cross-validation panel will fill the selected images in a table

and its controls will become enabled.

We will first explain default cross-validation over images.

Cross-validation over images

This section explains cross-validation over images (as selected in the Samples tab of the Cross-validation
panel).

In the Selection tab, we have three choices for common cross-validation strategies:
· Leave-one out - in this setup a single item defined in Samples (an image in this section) is left for

testing and all others used for trainig. 
· Rotation - Here a random splitting of images is performed first, followed by definition of smaller image

groups called folds. In each fold, one group is used for testing and all remaining for training. Note, that
images in each fold are tested only once in the rotation scheme

· Randomization - In this setup a random subset of a user-defined percentage is used for testing and all
remaining samples for training. This process is repeated fold-times. The major difference from Rotation
is that items in the test (images) may be used for testing multiple times. 



perClass Mira 5.0 Documentation

148 / 211

To start the cross-validation session, we click on Start session button .

The first fold of a leave-one-image-out scheme will look like as follows:

We may now perform what ever model building action we like with standard perClass Mira tools. For
example, run a model search in the Regression tool. We will observe a single test object:



perClass Mira 5.0 Documentation

149 / 211

To move to another leave-one-out fold, we may use either the fold spinbox or the slider . We are
free to jump to any fold we like. For example, jumping to the 3rd fold and re-running model search, we will
observe the following:

This is to explain the concept of cross-validation. Of course, leaving out a single single image is not too
complex in a normal work-flow and thus not very exciting. However, the Rotation and Randomization
schemes performed using the cross-validation over images become a great help. Whe the Cross-validation
tool really shines is the cross-valiadtion considering replicas.

TIP: After each manual retraining, you may copy the test set performance out from the Statistics tab

Closing cross-validation session

The cross-validation session needs to be ended by pressing End session button above. Alternatively,
cancelling image selection also disables the session. When selecting multiple images again, we must



perClass Mira 5.0 Documentation

150 / 211

explicitly start the cross-validation session.

Cross-validation over replicas

What is a replica?
Replica is a repeated measurement of the same physical sample. In order to estimate true
generalization performance of our models, we should keep replicas of a specific physical object either in
training or in test set, but never split between both. The reason is, that having very similar examples in both
training set and the test set makes perfrormance of our models positively biased (over-optimistic). Our
models have seen very similar data in training and thus correct results on such data in the test set do not
necessarily translate into good generalization capabilities. By generalization we mean robust performance
on entirely unseen examples.

Cross-validation over replicas in perClass Mira
If the replica status is preserved in the scan filenames, we can easily instruct the Cross-validation tool to
perform data splitting over replicas not over images. For example, in our poweder data set, the A/B/C...
letter indicates a replica of the same physical vial (container).
We keep the leave-one-out method selected in the Selection tab, return to Samples tab and change the

selection from Image to Samples . This means, that we may define what consititues are sample for
cross-validation. The default is invalid which leads to all selected images flagged as red. We Can now

define a regular expression in that parses image names and the sample definition in that ise used
for the cross-valiation.

Example solution in our case is to detect the mixing proportion from the file name and construct a new file
name that only lists the mixing proportion, nothing else. The reason is that we want to make sure that one
vial (i.e. one mixing proportion) ends up either in training or in testing set but not split in both.

Technically, we put in the regular expression that matches each file name allowing for the replica
definition using a single capital letter from A-Z range. After the underscore, we capture one or more diits
until the unther underscore. The capture (part of a string that will be extracted and avilable to us for
reference) is enclosed in round brackets. The \d referes to a digit, the + sign after means that the digit
repeats one or more times. This is a standard regular expression syntaxt that is very handy when dealing
with structured patterns in strings. 



perClass Mira 5.0 Documentation

151 / 211

TIP: For a reference information on regular expressions, see
https://en.wikipedia.org/wiki/Regular_expression

We also fill the output pattern in the Sample name field  above. The important point is that we may
refer here to any captures using $1, $2 etc. syntax denoting the 1st, 2nd or later captue (text matched
within the round parentheses of the regular expression). 

The table shows how original image filename translate into our new definition.

By clicking Start session we can initiate new cross-validation session where we will perform leave-one-vial-
out. We also pressed Model search in Regression panel in order to directly see test examples in the
Regression plot. Note, that the first fold now covers all replicas of the vial with mixing proportion 0. In
our case these are two images.

https://en.wikipedia.org/wiki/Regular_expression


perClass Mira 5.0 Documentation

152 / 211

By selecting a different fold using the spinbox  and re-running the Model search, we will exclude all
replicas of another vial from training:

Note, that in the fold 6, we have three replicas of the vial with mixing proportion 60. All three are now in a
test set. 

For each fold model, we may copy the regression performance from Statistics tab to clipboard, paste into
Excel sheet. In this way, we gradually build a table of per-fold results where we will be able to assess
statistical variability of each measure.

In this section, we have seen, how to fairly assess performance of our regression model on unseen vials in
powder project.



perClass Mira 5.0 Documentation

153 / 211

Default action

perClass Mira Cross-validation tool allows us to define default action executed when moving to a new fold.
By default, nothing happens and user can perform any desired analysis manually. That is what we did in
the earlier examples in this section.

The Action combo box in the Cross-validation panel allows us to change this default behaviour. We may
retrain classifier or regressor or rerun their model search.

Now, after a new fold is selected, the regression model search is automatically re-run. This simplifies
further the common work-flow:

· Setup cross-validation scheme and definition of samples, if needed
· Set the default action
· Start cross-validation session

o go to a fold
o model is rebuilt automatically
o copy results of interest

· Repeat until all folds are performed

Reference

This chapter provides reference information such as
· Software release notes
· Application server
· perClass Stage
· perClass Camera API
· perClass Mira Runtime API

Release notes

5.0 24-jan-2024
· Acquisition improvements

o Scanning to memory
· User can decide after the scan is made whether to save it or re-take it
§ Lossless scan compression based on a classifier or user-defined mask (.pcz files

with .hdr for meta-data)
§ Stopping scan after a number of frames is reached or an object is detected

o Scan naming improvements
§ User can easily increment counters in a scan filename. Words ending with a number

and separated by underscore can be incremented by cursor keys, mouse wheel or
perClass Mira Stage buttons



perClass Mira 5.0 Documentation

154 / 211

o Fast scanning work-flows
§ User can fully operate scanning session by perClass Mira Stage buttons (for example:

A = scan, B=increment filename counter, C=save)
§ Stage movements and stage button commands also mapped to keyboard shortcuts.

o Dual sensor scanning allowing the user to perform one scanning session resulting in two data
sets (VNIR and NIR) on the same objects
§ Master/worker paradigm: Master instance of perClass Mira can open new "worker"

instance
§ Master controls perClass Mira Stage and one sensor; Worker controls the second

camera
§ User can set each instance specifically for the camera needs and choose different

data storage directory
§ User then interacts with Master instance (to initiate scanning from both instances)
§ Master and worker can run on the same or different computers

o User can define spectral and spatial ROI for camera acquisition in the frame panel. This needs
to be done before adding the first scan to a project which fixes the spectral wavelength
definition

· Operator mode
o Simplyfied interface to deploy live demonstrators for solution operators
o Support for classification and regression projects
o Can enable user-permission system separating developers (who can change models) and

operators (who cannot)
o Operator session supports referencing
o Can enable logging detections and results into a data base (locally to SQLite or remotely to

MariaDB)
o Project/customer logo can be changed via mira.ini file

· Image selection improvements
o User can select images flagged as training/test or via a regular expression on image names

(Data / Image flags / Set flags by pattern or via / keystroke) 
· Regression improvements

o Support for object classification by regression output (new rules in Object panel)
o Support for defining region ground-truth from object point annotations (region labels by

applying decision rules)
o Full support for object confusion matrices based on regression and for cross-validation

· New acquisition plugins
o (experimental) PhotonFocus SDK supported for

§ Inno-spec RedEye
§ Headwall MV.C NIR

o (experimental) Resonon
§ New Applied Vision (VimbaX SDK) plugin supporting Resonon NIR systems
§ New Bassler (Pylon SDK) plugin supporting Resonon VNIR systems
§ These new plugins will replace the deprecated Resonon SDK acquisition

4.2.9 4-oct-2023
· Acquisition improvements

o Headwall MV.C VNIR camera supporting frame buffering. If computer cannot keep up with live
acquisition, the buffered frames will be now saved at the end of scanning session. Frame
buffering can be disabled by ini option

o Headwall MV.C NIR camera new shutter mode supported
o New VimbaX plugin to support Resonon NIR systems (replacing the deprecated Resonon SDK)
o Type of data stream included in recorded header files ("Raw calibrated" or "Resampled")

· perClass Mira Stage
o Speeding up stage response
o Fixing the intermittent problem where scans could be extended in length
o Adding stage cycle number



perClass Mira 5.0 Documentation

155 / 211

· perClass Mira improvements
o Regression import dialog interprets Excel address references case-insensitive

4.2.8 23-aug-2023
· perClass Mira Stage

o Added support for perClass Mira Stage v2.0
o Added TCP/IP commands to control the stage via Application Server interface

· Region improvements
o Added command to add regions from a template

§ Works also in a batch mode for all selected image
o Removing regions from multiple images does not remove template regions, user is asked to

explicitly confirm
· Regression improvememnts

o Added RER performance statistics in regression 
o Fixing the display of output with multiple objects

· Acquisition plugins
o fix in filereader plugin - preloading multiple cubes properly handles memory size limits
o Headwall HyperspecIII plugin adds support for wavelength information from the sensor
o Headwall MV.X allows using arbitrary IP address for the websocket communication (identical to

the eBUS data connection)
o Pleora eBUS plugin adding eBUS 6.3 version which enables enables full support Windows 11

(eBUS 5.1 and 6.1 are also supported)
o Resonon acquisition adds a setting for a number of aquired reference frames
o Unispectral acquisition reports situations where the camera does not return a frame

· Benchmarking improvements
o Added automatic optimization of the best band subset (ROI) and classification model for a

given project
o Benchmark visualization of the benchmarked ROIs for speed, for error and for both criteria
o Best feature set found can be set to the project spectral plot

4.2.7 26-jun-2023
· Fixed issue with dropped frames on Headwall MV.C VNIR
· Benchmark frame count limit increased to 100k frames

4.2.6 14-jun-2023
· New command to copy class mean (min/max) spectra to clipboard as text in Spectral plot

o Copy wavelengths and band selection to clipboard information as text
· The export into Matlab command is batched applying the action to selected images
· The Add regions from objects command is batched applying the action to selected images
· New Set source command in Camera menu allows to switch the project to a different acquisition target

(from the favorities)
· New dropped frame counter in the Camera panel
· Panels in the Windows menu are now in alphabetic order
· Fixed crash when changing acquisition source
· Cubert acquisition improvements

o Distance can be changed via mira.ini file
o Fixed auto-exposure

4.2.4 20-apr-2023
· added support for Avaldata camera uing TransFlyer SDK
· added export of regions as cubes



perClass Mira 5.0 Documentation

156 / 211

· Help menu now opens on-line documentation in a browser
· Application server: added object detection channel for filereader plugin
· fix for crash in visualization when using image rotation
· fix in sync panel to download only selected directories
· fix in buffer queueing in Pleora eBUS acquisition
· Headwall MV.X license and runtime installation and switching from sync panel
· Headwall MV.C cameras 

o adding reference frame count in header files, default 100
o fixed ROI offset and wavelength flip

4.2 13-mar-2023
· new Camera and Images modes allow easy transition between live acquisition and working with saved

scans
· support for perClass Stage

o includes user-defined commands for stage hardware buttons
o support for a quick setup of a camera

§ auto-exposure leveraging available dynamic range for current illumination
§ finding optimal focus using easy user feedback
§ adjustment of scanning speed or frame rate to reach square pixels for line-scan

cameras
· new Cross-validation tool

o Easily perform leave-one-out, rotation and randomization cross-validation for classification or
regression

o Supports cross-validation over images or over replicas (multiple scans of one physical sample
that need to be all either in training or in the test set)

· new tool to add manual object separation to existing object segmentation
o This allows one to pack more objects in one scan even if touching. Manual object separation

does not extend to deployment. 
o Object separation enables also fine control on areas used for regression analysis

· new sensor support
o full support for Headwall MV.C VNIR and NIR cameras
o partial support for legacy Headwall HyperspecIII cameras (currently VNIR and NIR supported,

not SWIR)
o support for snapshot filereader
o experimental support for Agrowing sensors

· new perClass Camera API
o provides a unified interface for embedding data acquisition into custom applications

4.1 22-sep-2022
· new docking system allowing better panel positioning

o user may name and save "perspective" of all open panels over multiple screens
· data acquisition

o new frame widget showing live raw frames with spatial and spectral profiles
§ saturation detection for selected cameras
§ frame widget is automatically active also on loaded scans (off-line)

o new "belt' visualization of the live data stream
§ visualizaing live object classification results also for line-scans
§ possible to switch between waterfall and belt views

· new filereader plugin for line scans
            allows setting of frame rate to measure algorithm speed
· user-defined visualization color maps

o multiple color points and colormap reversal



perClass Mira 5.0 Documentation

157 / 211

o colormaps can be stored in mira.ini file for re-use beyween projects and copy/pasted as text
· improved alpha layer handling

o two sliders provided, one for all classes and one for the currently selected class
o alpha layer can be adjusted during the live acquisition to highlight only the decisions of interest

· new application server functionality
o perClass Mira acquisition can be controlled via text commands sent over TCP/IP connection
o this allows quick construction of live demonstrators including custom actuator without low-level

programming
o separate object detection channel allowing one to react on detections

· new sensor support
o HAIP BlackIndustry
o Headwall MV.X using Pleora eBUS
o Silios CMS using Silios SDK

· fixes
o Excel export of full spectral uses .xlsx file format by default allowing up to 16k columns
o regression auto-scale via context menu
o add regions from current objects works correctly in cases when segmentation was not applied

to the image
o adjustments of the confusion matrix to avoid unreadable text due to close

foreground/background colors
o fixed auto-detection of ENVI cubes without extension

4.0 6-apr-2022
· adding comprehensive data acquisition and recording functionality

o Supported camera types
§ Cubert - Ultris series
§ Imec - all Mosaic systems (including PhotonFocus and Ximea cameras)
§ Inno-spec - RedEye 1.7 NIR and Speccer moving stage
§ Resonon - both VNIR systens and NIR Pika systems
§ Specim - FX series (via SpecSensor SDK)
§ Unispectral - Monarch

o redisigned new project dialog - the user can select to either to
§ load existing scans recorded in camera vendor-specific software
§ or to do live data acquisition from supported camera

o live acquisitions support raw (uncorrected) data from spectral camers and user-defined
reflectance correction work-flows
§ point correction (based on user-localized white reference in the scene)
§ non-uniformity correction to account for inhomgeneous illumination
§ user-defined white level to support gray references
§ setting references from existing scans

o data in the live acquisition is saved in the new perClass Mira data format (ENVI-based, .pcf
extension)
§ In this way perClass Mira supports multiple correction work-flows for any supported

camera type
§ scan-specific and directory-specific correction references

o live data processing includes object segmentation and classification for snapshots
· new Cubert project type supporting .cu3 files for all cameras
· specific features for Unispectral

o Supporting band selection in the camera to speed up acquisition
o Fix supporting 'default bands' field with only a single entry

· for VNIR systems, R,G and B lines in the preview mode are se to meaningful defaults. User can change
preferred defaults in mira.ini

· Export of spectral cube to Matlab now includes also the wavelength vector
· Regression improvements



perClass Mira 5.0 Documentation

158 / 211

o Significantly faster operation, avoiding processing of images on project load

3.1.2 2-dec-2021
· copy current image view to clipboard as image using Ctrl+C
· adding display autoStretch option with a slider control in the spectral plot context menu
· regression improvements

o adding dark/light background option to regression plots
o adding copy to clipboard to regression plots
o adding copy as text (direct copy to Excel) for regression performance values

· object confusion matrix considers only true regions from classes flagged as foreground
· enabling regression output in acquisition mode
· fix of regression issue that could lead to non-reproducible model when bands in the end of the range

were selected 
· enhancing support for spectral cubes larger than 4GB
· fixing crop on Silios images
· fixing the issue where object segmentation sometimes flipped to object IDs even if object labels were set
· fixing the issue with auto scaling of regression plot in situations with a lot of outliers

3.1.1 25-oct-2021
· fixing the bug in display auto stretch where the stretch was on by not enabled
· fixing the problem when training classifiers on large cubes (>4GB)
· fixing the crash in object confusion matrix

3.1 3-sep-2021
· new project types

o Inno-spec project including reflectance correction on scan load (correction can be specified
per-image and per-directory)

o Resonon project type supporting reflectance correction on scan load
· new installers

o adding support for CUDA11.2
o separate full installer including NVIDIA CUDA support
o separate smaller installer for CPU + OpenCL backends convenient also for virtual machiens

· significant speedup of classification at runtime
o holds for both CPU and GPU backends including also older projects

· new acquisition functionality
o acquisition plugins allow use of different vendor SDKs
o adding support for Resonon Pika cameras
o SpecSensor plugins for 2019 and 2020 SDKs
o Pleora eBUS support for eBUS 5.1 and 6.1 adds support for GenICam-compliant sensors such

as Inno-Spec RedEye2
· improvements in regression

o outlier score plot and error plots help to clean training/test set of outliers
o performance measures panel with user-defined acceptance criteria

· GUI improvements
o object-level confusion matrix with interactive visualization of ground-truth and detections allows

full introspection of object-level decisions
o added support for object shape features (Feret diameter, Hu moments, cirtularity)
o added support for multiple directory selection for projects where each scan is a directory
o images with labels show image names in italics
o new auto-stretch of image brightness with slider-based adjustment in spectral plot menu



perClass Mira 5.0 Documentation

159 / 211

3.0 22-mar-2021
· improvements in regression

o support for multiple regression variables
o significant speed-up when updating regression data sets
o separate commands for model search, retraining model and applying model both to data and

on a new scan
o import regression meta-data from Excel also at region level (via named regions, see below)
o easy inspection of outliers: jump to a scan containing specific object/annotation point
o runtime API for per-object and per-pixel regression output for each variable

§ support for background pixel masking
· introducing user-defined regions

o regions have unique names within each image and are assigned to a specific class
o regions can define object ground-truth labels
o by matching regions to object found it is possible to estimate of confusion matrix at object level

and assess sorting performance
o Excel export and import of region definitions
o user-defined text annotation such as expert remarks can be added

· introducing feature extraction
o extract and export user-defined features from objects or user-defined regions

§ mean spectra
§ spectral index mean or histogram per object
§ fraction of decisions per object
§ regression output per object
§ object count

o information can be extracted from computed objects or from user-defined regions
§ for regions, presence/absence of data is reported (e.g. no plant in a germination well)

o export to Excel and XML formats
· introducing batch feature extraction accessible from scripts without GUI via perClass_Mira_Batch.exe

o export to XML format
o define a template image specifying regions for extraction (e.g. grid of germination wells)
o validating scans via a user-defined model rejecting data unseen in training

· improvements to image flagging
o set selected images for testing or training
o set a percentage of selected images as test (to perform user-defined cross-validation studies)

· batch crop applied to selected images
· spectral index definitions are saved in the .mira project file
· improves when processing large number of scans

o ability to cancel long running operations (like result exports or regression meta-data imports)
· commands to switch between band subset used for a classifier and for a regressor
· possible to define band subset manually by band indices (e.g. 20:40 will enable bands 20 to 40)

o adding and removing bands to/from existing band subset (useful to disabla certain ranges)
o possible to set or toggle each Nth band

· new project type for Silios CMS cameras

2.4 28-sep-2020
· added reflectance correction for Headwall project type (correction by whiteReference and

darkReference ENVI cubes in the same directory)
o allows loading of externally corrected cubes in the same project
o enables multiple scans per directory sharing the same correction
o default cube extension is .bin, arbitrary extensions are supported



perClass Mira 5.0 Documentation

160 / 211

o to apply correction at runtime, pass directory containing whiteReference and darkReference
scans to mira_LoadCorrection (example:
mira_LoadCorrection(pmr,"path_to_dir_with_correction_files",NULL) )

· added general ENVI project type supporting arbitrary cube file extension
· added Corning project type

o added perClass Mira Runtime support for native BIP data stream corrected with dark reference
inside the camera

· improved selection of multiple images (click and drag supported, no image reload in multiple selection)
· improved drag&drop of directories (adding all files within each dropped dir)
· added support for NVIDIA CUDA11 (Ampere)
· when using floating licenses, specific licensing product can be requested based on

floatingLicenseProduct setting in mira.ini (mira for perClass Mira Dev and mira.gui for
perClass Mira)

· when importing regression annotation from Excel, existing points are removed to avoid duplicates
· fixed a problem when adding regression annotation to all objects in each scan
· fixed problem when label painting with large brushes
· fixed memory leak in loading large number of specim FX scans
· fix for dropped frames at the start of live acquisition session
· at runtime, all projects (including line-scans) must explicitly enable object segmentation with

mira_SetSegmentation(pmr,1)

2.3 26-jun-2020
· support for foreign object detection with trully unknown objects

o label materials you know. Enable Show unknown to highlight all materials unseen in training.
o user-adjustable sensitivity on per-class basis provides extra control (slider via the right-click in

the class-list)
o objects unseen in training can be segmented out (flag Unknown decision as foreground)
o the new foreign object optimizer is on by default, can be disabled in Classification menu. 

· color wells display transparency (change alpha for a specific class in the color dialog or by via alpha
toolbar button by holding Ctrl)

· crop improvements
o crop rectangle line thickness auto-adjusted for very large cubes
o adjust crop rectangle by dragging lines

· segmentation improvements
o support for up to 20 foreground classes including access to their content information
o per-object results can be batch-exported to Excel including per-class content in each object
o fix for a crash due to changing object size in live acquisition mode

· confusion matrix improvements
o added light mode (to allow copy/paste directly to documents)
o added option to copy as text for direct copy/paste to Excel

· fixed live acquisition issue when Specim calibration file (.scp) was not found
· fix for min/max visualization setting in presence of NaNs and infinite values
· support for case insensitive fields ENVI in header files (for Python integration)
· runtime improvements

o support for region of interest (ROI) for snapshots. Applying classifier only to specific ROI.
o support for object segmentation for snapshot use-cases (Imec project type, float data type, BIP

layout)

2.2 29-apr-2020
· new Visualization mode showing computed indices using different common equations

o define using individual wavelengths or wavelength ranges
o auto-scaling and manual scaling



perClass Mira 5.0 Documentation

161 / 211

o indication of below, above and invalid values
o define wavelength ranges interactively in spectral plot
o render using different colormaps

· improved regression 
o visualize per-pixel regression output (e.g. distribution of moisture)
o import point annotations from Excel (matching scan names exactly or with regular expressions)
o move and edit point annotations
o use only specific subset of spectral bands
o show cross-validated regression error (RMSECV) which has the same units as the regressed

value
o when hovering over the results in the regression plot, display specific annotation points with

their true and estimated values 
o visual indication that some point annotations are not linked to objects (e.g. point not on

foreground class)
o export regression results in Excel together with per-object size, bounding boxes, true and

estimated regression outputs
· perClass Mira Runtime improvements

o added model export for perClass Mira Runtime (new "Mira Pipeline" .mpl format using base64
encoding)

o added API to query expected data type, data layout and geometry of data from spectral
camera

o added support for all object segmentation configurations created in the GUI including per-
object content retrieval and object classification by rules

o added snapshot processing mode (mira_ProcessCube). Currently only pixel decisions are
provided, not yet the object segmentation or content.

· added support for OceanInsight Spectrocam and Pixelcam data formats
· added support for ENVI cubes with uint32 data type and little-endian float
· added classifier preprocessing (smoothing, 1st and 2md derivative)
· export and import labels as PNG images
· export per-image results to Excel allowing quick summary of fraction of decisions within foreground

(e.g. disease within plant leaves)
· update of live acquisition using Specim SpecSensor SDK

o Applying regression both per-object and per-pixel in live acquisition
o Calibration pack information stored in settings, reused for further sessions

· fixes in object pannel: When retraining the classifier, object classification rules are preserved
· adding default class color map
· repeatable object label colors (can be change using random seed dialog)
· added per-class transparency (alpha setting in the color dialog and using the toolbar transparency

slider - hold Ctrl to change only the current class alpha)

2.1 18-feb-2020
· Specim FX project type allows scan directories with different name than raw cube in capture sub-folder
· Unicode support in image file names for ENVI-based formats
· providing informative error messages when image cannot be loaded
· adding Cubert Tiff project type with native support for Cubert Ultris camera
· adding Headwall project type
· license file can be drag & dropped from Explorer to the license dialog
· RGB bands are set based on ENVI header file
· mira.log file is now written to AppData/Roaming, not to the installation directory (now by default in

Program Files (x86))
· fix of calibration pack loading in SpecSensor
· labels can be exported into .png files
· ENVI import supports int16 data type



perClass Mira 5.0 Documentation

162 / 211

· when the number of sampes is too low, the output window shows a red message that can provide
details on click

· when alpha is too low (high label transparency), the toolbar alpha button blinks to remind the user that
labes may be badly visible

2.0 18-oct-2019
· new Cubert ENVI project enabling data from Cubert Ultris and upsampled UH185 images
· perClass Mira Runtime binaries adding dongle support

2.0 10-oct-2019
· adding support for double-precision ENVI data cubes
· supporting model deployment for execution on live data from Cubert Ultris light-field hyperspectral

camera
· enabling Cubert plugin export for ENVI-based projects. 
· fixes in live acquisition using Specim FX cameras when device loading fails or opening FileReader gets

cancelled
· fixing a crash due to very large training set
· fixing a bug in error visualization mode where switching to images without labels did not show proper

image

2.0 20-sep-2019
· Fix: Installation directories with non-ASCI characters are now supported
· Live acquisition executables for Specim cameras included (perClass_Mira_live.exe and

perClass_Mira_gpu_live.exe)
· Senop project: Images are automatically processed with per-band gain

2.0 6-sep-2019
· Estimate object quality using regression (examples: sugar content estimation per tomato)

o annotate quality per object
o automatic model selection reporting performance (R^2 and Q^2 statistics)
o user-defined pre-processing (smoothing and derivatives)
o apply regression to new images (show a bounding box + regression output per object)
o allow localized information extraction by a radius around annotation points

· Images can be flagged for testing only (not used for building the model)
o Test confusion matrix provides a detailed view of the performance on test images

· Error visualization mode brings insight in model performance. 
o visualize where the current model fails
o this helps to identify incorrect labels or (together with test image flagging) whether the data is

well represented in the training set
o Image confusion matrix shows only labeled examples on the current image
o interactive error visualization by moving mouse over the image confusion matrix

· Object segmentation mode with multiple options
o one object / one class mode for object detection (e.g. detect plastic pieces in a food product

stream for automatic removal)
o one object / multiple classes for object classification (e.g. detect potato pieces, classify entire

piece as defective if it contains more than 5% of greening or rot inside)
o visualizing object labels or object decisions
o object decisions by majority vote or rules (size of or fraction of a specific class)

· Usability improvements
o assign label stroke to the current class. This allows one to exclude a specific label stroke

from training and see the impact on model performance (define an additional class and
exclude it, assign strokes to it and retrain)



perClass Mira 5.0 Documentation

163 / 211

o the data validation mechanism excluding invalid spectra is now off by default. It can be enabled
using context menu in the spectral plot.

o all modes (labels, decisions, errors, objects) accessible by direct keystrokes
o confusion matrix size can be decreases/increased (useful for large number of classes)
o auto-check for software updates + direct link to download latest version from the GUI (Help /

Check for updates)
· experimental Live data acquisition from Specim FX cameras using Specsensor SDK (needs to be

installed separately)
o apply a classifier and object segmentation to a live data stream
o live visualization of processing speed and drop frame indication to assess production

performance
o user-control of exposure and camera frame-rate
o supports practical situations where production light conditions are diffrerent from the training

situation
§ the white and dark references used for live data processing can be specified without

model retraining
o automatic handling of spectral and spatial binning based on specific scan meta-data
o support for outdoor operation: Define white reference by specifying an image region where

a reference tile was placed
o recording data from a live acquisition in the standard LUMO format

1.4 22-may-2019
· perClass Mira Runtime is now included in the distribution

o high throughput (1.5ms/frame on NVIDIA GPU in an example foreign object detection project,
Specim FX17, 640 spatial pixels, 224 bands, 6 materials)

o the runtime directly reports object positions, sizes and classes
o support for NVIDIA Jetson platform (both ARM CPU and NVIDIA GPU backend)
o support for line-scan use-case on Specim projects (specific white/dark correction format)

· Linux build for both perClass Mira GUI and perClass Mira Runtime
o accelerated CPU and GPU support on Linux

· new high-throughput segmentation engine
o automatically discarding objects smaller than user-defined minimal size
o supporting multiple foreground classes
o high-speed line-scan segmentation with constant per-frame speed

· export visualization as PNG images (band or RGB, with labels, pixel decisions or segmented objects)\
· for Cubert projects, proper wavelength ranges are shown

1.3 8-feb-2019
· zoom using mouse wheel now follows cursor
· image rotation using toolbar buttons (and > < keyboard shortcuts)
· adding images using drag and drop from Windows explorer
· support for ENVI files with high-endian byte order uint16 (byte order=1)
· saved projects now preserve settings of the current band, R,G,B lines and allow direct execution of the

trained model when project is loaded
· exported decision images (PNGs) contain meta-data such as class count and class names accessible

by standard tools such as tweakpng or Matlab imfinfo command
· multiple directory selection for Specim FX and Tiff stack project types can be enabled in mira.ini file

(using useNativeDirSelection=false). It is not enabled by default because it uses a non-native
file dialog.

· new project type for Senop cameras (formerly Rikola)

http://entropymine.com/jason/tweakpng/


perClass Mira 5.0 Documentation

164 / 211

1.2 5-dec-2018
· Added band-selection widget. It is now possible to manually select the wavelengths used for building

models
o Band brushing allows quick selection or clearing of wavelength ranges
o Exported models start from the full set of wavelengths but use only the selected subset for the

model. This allows quick deployment of different models to custom applications assuming full
spectrum (single binding with perClass Runtime is needed)

· Added export of labeled data to perClass Toolbox sddata format
· Added export of entire data cube in Matlab format as 3D matrix
· Models results are now repeatable with a new random seed dialog controlling the internal data

partitioning process.
· Separate CPU-only and CPU+GPU builds are available. The CPU-only build is always available by

default to avoid issue related to GPU drivers or CUDA versions installed. The CPU+GPU executable is
called perClass_Mira_gpu.exe

· Band index and the wavelength number are now updated on the status bar when dragging the band line
in spectral plot

· Added support for logging of status messages when starting up the application. This is useful to
understand some issues with GPU installations and CUDA versions. Logging is off by default, can be
switched on in the mira.ini file.

· Licensing improvements:
o For activated licenses, there is now an auto-update mechanism that pulls updated license from

the activation server when the application starts. The application may be used without on-line
connection - it is needed only once in two weeks.

o Adding support for floating licenses obtained over network from a license server. Floating
licenses are now checked out one per session.

· Fixed wrong file name of previous project used for saving new project with File/Save command
· Fixed a crash when preview image could not be loaded

1.1 10-sep-2018
· confusion matrix view showing detailed error information

o interactive performance optimization in a confusion matrix (slider in right-click context menu or
a mouse wheel on confmat entries)

o confusion matrix shows normalized errors and precisions, absolute sample counts available as
well

o quickly switch to confmat with 'c' key and to spectral plot with 's' key
o define performance constraints via double click on a confusion matrix field (create/remove

constrain)
o constraints may be adjusted live by Ctrl+mouse wheel
o constraints may be enabled/disabled to understand available performance options
o move between available solutions fulfilling all constraints with [ and ] shortcuts

· preview image from user-adjustable R,G and B bands when spectral cube is loaded
o this view improves labeling experience for many material types that look similar in a single band

but their differences may be highlighted in R,G,B view
· undo/redo for label painting speeds up labeling
· image crop providing significant memory use reduction and processing speedups

o when a project with a cropped image is loaded, the original cube is loaded and cropped
o original cube may be loaded as a new image and multiple crops from the same cube are

supported
· including perClass Runtime DLL and example of spectral cube processing in C

o support for both single precision and double precision pipelines (with a new perClass 5.4
Runtime)

o significant speedup of exported classifiers



perClass Mira 5.0 Documentation

165 / 211

o legacy export option supporting older deployed runtimes <= 5.2
· a preview rotation command allows one to fix the rotation between preview and spectral cube (e.g. on

Specim IQ projects)
· adding an option to exclude a class from training (right-click in class list or press 'x')

o this allows one to quickly check the impact of specific classes on the overall solution
· option to purchase a license online and directly turn the demo into a commercial product
· dialog to request Skype/Teamviewer session on start up
· fix for a wrong class index after removing a class
· fix for clear labels of an image

1.0 13-jul-2018
· fix for a dock shift bug (when resizing a docked window and clicking on the image, the docked pannel

resized back)
· adding band line dragging by mouse
· adding max valid line which is automatically set on image load
· when user is on preview and tries painting, a dialog is shown to load the entire cube (allows quick

image changing without load)

1.0 29-may-2018
· first public release

Integration
This section describes how to integrate solutions, built with perClass Mira, into custom applications running
camera acquisition and data processing.

The scheme below describes the modules involved. While perClass software components are rendered in
blue, the spectral sensor in red and customer-specific parts in yellow.

The left side depicts the Design stage where perClass Mira Dev user-interface (1) to connect to a spectral
camera (2). From the user interface, we can record scans (A) used for training and testing the models.
Once the solution is built and properly validated, it may be exported into "Mira PipeLine" MPL file (B).

Then, we may proceed to the Deployment stage on the right side. There, we wish to run an industrial
sorting machine (8) with the camera (2) in a tight control loop. This loop is executed on a PC in a custom
solution (3). This is an application that reads data from the sensor (2) using perClass Mira Camera API (4)
and processes this data with perClass Mira Runtime API (6).

The runtime (6) loads the exported MPL solution (B). This solution typicallt contains a classifier able to
identify objects. Objects are detected by the Runtime (6) and their details such as size, centroind position
and class are passed to a custom code (7). This module translates the coordinates from pixels (across the
belt) and frames (along the belt) to machine-specific coordinates and drives the actuators.

Commented example of acquisition from Camera API is available here.



perClass Mira 5.0 Documentation

166 / 211

Example of acquisition from Camera API

This example shows how to acquire data from a sensor using perClass Mira Camera API. The sensor used
is Headwall MV.C VNIR. The example is generic and should work unchanged with other line-scan cameras
when linked to the respective perClass acquisition plugin.

The example shows how to:
· inquire on the version of acquisition library (line 13)
· initialize the acquisition plugin (line 20)
· scan for available devices and return their names (line 25-31)
· open a device (line 33)
· test if a device is a line-scan or snapshot (line 36)
· setup wavelength resampling to specific output wavelengths irrespective of a device (line 43-49)
· initialize acquisition (line 51)
· query frame geometry, data type and layout (60-72)
· set exposure and frame rate (lines 74-76)
· acquire 100 frames, store data in memory (line 94-100)

In order to compile the example with command line Microsoft Visual C/C++ compiler use:

> cl ex05.c -I "C:\Program Files\perClass Mira\lib" "C:\Program Files\perClass
Mira\lib\miraacq_ximea_1.7.1.lib"

Note, that we point to the lib sub-dir of perClass Mira installation for includes and directly link with the
acuisition plugin for your camera (Ximea plugin for MV.C VNIR).

1. #include <stdio.h>

2. #include <stdlib.h>

3. #include <stdint.h>

4. #include "miraacq.h"

5.  

6. int main(int argc,const char* argv[])

7. {

8.     int res=MIRA_OK;

9.     uint16_t* pBuf=NULL;



perClass Mira 5.0 Documentation

167 / 211

10.     FILE* fid=NULL;
11.  
12.     int api,rev,step;
13.     const char* str=miraacq_GetAPIVersion(&api,&rev,&step);
14.     printf("Example of acquiring data using perClass Mira Acquisition Plugin\nVersion: %d.%d.%d (%s)\n",api,rev,step,str);
15.  
16.     const char* str2=miraacq_GetVersion();
17.     printf("Version: '%s'\n",str2);
18.  
19.     makernel* pma=miraacq_Init(".");
20.     printf("Init: %s", miraacq_GetErrorMsg(pma));
21.     if( pma==NULL ) {
22.       goto Error;
23.     }
24.  
25.     MIRAACQ_CHECK( miraacq_ScanDevices(pma) );
26.  
27.     const int devCount=miraacq_GetDeviceCount(pma);
28.     printf("\n%d devices:\n",devCount);
29.     for(int i=0;i<devCount;i++) {
30.         printf("%d : %s\n",i, miraacq_GetDeviceName(pma,i));
31.     }
32.     int deviceInd=0;
33.     MIRAACQ_CHECK( miraacq_OpenDevice(pma,deviceInd) );
34.     printf("Device opened: %d '%s'\n",deviceInd,miraacq_GetDeviceName(pma,deviceInd));
35.  
36.     int isSnapshot=miraacq_DeviceIsSnapshot(pma);
37.     if( isSnapshot ) {
38.       printf("Line-scan device required by this example\n");
39.       MIRAACQ_CHECK( miraacq_CloseDevice(pma,deviceInd) );
40.       goto Error;
41.     }
42.  
43.     printf("Setting resampling from 400 to 1000, step 2\n");
44.     int bands=(1000-400)/2;
45.     MIRAACQ_CHECK( miraacq_SetResamplingWavelengthCount(pma,bands) );
46.     for(int i=0;i<bands;i++) {
47.       MIRAACQ_CHECK( miraacq_SetResamplingWavelength(pma,i,400+(2*i)) );
48.     }
49.     MIRAACQ_CHECK( miraacq_SetResampling(pma,1) );
50.  
51.     printf("Initializing the acquisition...");
52.     res=miraacq_InitializeAcquisition(pma);
53.     printf("done res=%d\n",res);
54.     fflush(0);
55.     if( res!=MIRA_OK ) {
56.       MIRAACQ_CHECK( miraacq_CloseDevice(pma,deviceInd) );
57.       goto Error;
58.     }
59.  
60.     printf("Geometry: width=%d bands=%d lines=%d dataType=%d dataLayout=%d frameSize=%d\n",
61.    miraacq_GetFrameWidth(pma),
62.    miraacq_GetFrameBands(pma),
63.    miraacq_GetFrameHeight(pma),



perClass Mira 5.0 Documentation

168 / 211

64.    miraacq_GetFrameDataType(pma),
65.    miraacq_GetFrameDataLayout(pma),
66.    miraacq_GetFrameSize(pma)  );
67.  
68.     if( miraacq_GetFrameDataType(pma)!=ACQ_DATATYPE_UINT16 ) {
69.       printf("UINT16 data type expected by this example\n");
70.       MIRAACQ_CHECK(miraacq_CloseDevice(pma,deviceInd));
71.       goto Error;
72.     }
73.  
74.     MIRAACQ_CHECK( miraacq_SetExposure(pma,4.0) );
75.  
76.     MIRAACQ_CHECK( miraacq_SetFrameRate(pma,100.0) );
77.  
78.     const int frames=100;
79.     int frameSize=miraacq_GetFrameSize(pma);
80.     pBuf=malloc( frames*frameSize );
81.     if( pBuf==NULL ) {
82.       MIRAACQ_CHECK(miraacq_CloseDevice(pma,deviceInd));
83.       goto Error;
84.     }
85.  
86.     MIRAACQ_CHECK( miraacq_StartAcquisition(pma) );
87.  
88.     uint16_t* ptr=pBuf;
89.     size_t frameID=0;
90.  
91.     // offset to the next frame in uint16 units (a frame has width x bands units)
92.     int nextFrameOffset= miraacq_GetFrameWidth(pma)*miraacq_GetFrameBands(pma);
93.  
94.     printf("Acquiring %d frames:\n",frames);
95.     for(int i=0;i<frames;i++) {
96.  
97.       MIRAACQ_CHECK( miraacq_GetFrame(pma,ptr,&frameID,1000) );
98.  
99.       ptr+=nextFrameOffset;
100.    }
101. 
102.    printf("Stopping acquisition\n");
103.    MIRAACQ_CHECK( miraacq_StopAcquisition(pma) );
104. 
105.    printf("Writing data to file:\n");
106.    FILE* pFile=fopen("out.bin","wb");
107.    if( pFile==NULL ) {
108.      printf("Cannot open file for writing\n");
109.      MIRAACQ_CHECK(miraacq_CloseDevice(pma,deviceInd));
110.      goto Error;      
111.    }
112. 
113.    size_t countWritten=fwrite(pBuf,(size_t)frameSize,frames,pFile);
114.    printf("%zu bytes written to file\n",countWritten*frameSize);
115. 
116.    fclose(pFile);
117. 



perClass Mira 5.0 Documentation

169 / 211

118.Error:
119.    if( res!=MIRA_OK ) {
120.        printf("Error %d: %s",miraacq_GetErrorCode(pma),miraacq_GetErrorMsg(pma));
121.    }
122. 
123.    miraacq_Release(pma);
124. 
125.    if( pBuf!=NULL) free(pBuf);
126. 
127.    return 0;
128.}
129. 

Application Server
perClass Mira provides an Application Server functionlity that enables remote control of perClass Mira GUI
over TCP/IP networking protocol. The use-case for the Application Server is a quick construction of
live visual demonstrators with camera and perClass Mira processing in the custom control loop.

The following scheme clarifies the Application Server operation. The Application Server (3) is running under
perClass Mira Dev (1) enviroment. It listens to commands sent from a custom interface (7). The commands
can control the attached camera (2). If the solution is able to detect objects in the live data stream, their
coordinates are passed over a separate connection to a listening component (8) that can act on the
detections.

The Custom Machine (10) is a demonstrator controller that may also involve an actuator such as a PLC or a
robot arm. Custom application logic (9) can leverage the Application Server (3) to bring perClass Mira live
processing and visualization capabilities in custom control loop using only simple text commands.

Enabling application server

Application server is only available in perClass Mira Dev product and requires presence of "appserver"
licensing option in the license file.



perClass Mira 5.0 Documentation

170 / 211

Check whether the current license offers Application Server functionality
· In a running perClass Mira instance, select Help / Open license directory command. A Windows

Explorer window will open in the directory containing licenses and settings (C:
\Users\USERNAME\AppData\Roaming\perClassBV)

· open the license file present (by default mira.lic) in a text editor
· The Application Server is available only in perClass Mira Dev licenses. Therefore, the license file needs

to start with LICENSE prsysd mira
o If the license file starts with LICENSE prsysd mira.gui, the current license is perClass Mira

(GUI only) and cannot run camera acquisition or Application Server.
· the license options field should contain appserver string in order to use the Application Server 

o Note that to control acquisition, also acquisition support needs to be present (acq option)

Enable Application Server function
By default, Application Server functionality is disabled. We can enable it in perClass Mira settings file
(mira.ini).
· close any running instance of perClass Mira
· open the C:\Users\USERNAME\AppData\Roaming\perClassBV\mira.ini file in a text editor
· Edit the line with startCommandServer command so that it is enabled:

o startCommandServer=true
· Save the mira.ini file
· Start perClass Mira

o Select the connected camera for acquisition or a filereader

The perClass Mira output windows should list the note on open Application Server ports:

When opening the application for the first time, Windows OS may request user consent to open the ports in
a separate window.

If you cannot see the ports open, double check that you're not running any security software preventing
that perClass Mira application opens TCP/IP ports.

Communicating with the server

Application Server listens on TCP/IP port 51234. 

In order to communicate with the server, we need to send TCP/IP text commands from some external utility
to perClass Mira. In our example, the utility may run on the same computer as perClass Mira. This is
necessary. Typical demonstrators will run perClass Mira on a separate computer dedicated to a "second
screen" and control it from already available control computer or PLC system orchestrating the entire



perClass Mira 5.0 Documentation

171 / 211

process (belt control, actuators, lights etc.)

In the following example, we use the free PacketSender software you may download from:
https://packetsender.com/

To prepare perClass Mira for running the Application Server session, we need to initialize an acquisition
device (either a camera or a filereader).

Once we are able to start and stop acquisition from perClass Mira side, we may do the same remotely.
Application Server provides a number of text commands that invoke actions.

TIP: perClass Mira installation contains a ready-to-use data base of commands in PacketSender format in
the lib directory. You may import these to a PacketSender session.
In PacketSender, we define two commands, namely "acq start" and "acq stop". For each command, its

name and payload (content) are defined in the section . Secontion defines the Application Server
machine address and port. In our situation, we fill "localhost" as both perClass Mira and the PacketSender
run on the same machine.

We can send the command by pressing Send button . The command can be saved for later use with

Save button .

In perClass Mira window, we will see the text command listed in the Output window  and the acquisition
will start:

https://packetsender.com/


perClass Mira 5.0 Documentation

172 / 211

Below you can see, that the PacketSender window lists both the command sent  and also the response

of the Application Server . The response always starts with "ok;" or "error;" string denoting whether the
command is understood, followed with the actual command string, another semicolor delimiter and an
aditional comment.



perClass Mira 5.0 Documentation

173 / 211

Command list

Available commands of the Application Server

Generic commands

· acq start - start acquisition
· acq stop - stop acquisition
· acq state - return acquisition state

o example response: "ok;acq state;1"
§ 1 = acquisition initialized but not running
§ 2 = acquisition running

· acq info enable - enable object detection reporting on separate object stream
· acq info disable - disable object detection reporting on separate object stream
· acq info totalsize - return the total size of objects detected in the session

o the total object size counter is reset when starting acquisition

· acq darkref record - record dark reference
o Only full frame references are supported (non-uniformity)
o reference recording does not automatically close the shutter. Use camera-specific shutter

command before to close the shutter and reopen after the reference recording.
· acq whiteref record - record white reference

o Only full frame references are supported (non-uniformity)

· view clear - clear the display
· view save FILENAME - save current display into PNG file named FILENAME in current directory (top-

level data directory)
· view acq MODE - set specific view mode

o raw - view the raw data stream
o corrected - view the reflectance corrected data stream (references need to be acquired)
o decisions - show the decision layer (model needs to be defined)
o objects - show object detections. The model and object segmentation needs to be defined in a

model
o waterfall - set the view type as waterfall (overwriting the data in a cyclical fashion)
o belt - set the view type as a belt view (the stream moves like if watching belt from the top)

· decisions - return the comma-separated list of model decisions
o Example output when running a four class classifier:

"ok;decisions;background,leaves,shells,nuts\n"

Control of perCass Mira Stage
· stage connect - connect to the stage
· stage disconnect - disconnect from the stage
· stage stop  - stop any stage movement
· stage left | right | center - move the stage right, left or center
· stage position POS - moves the stage to the position POS (in mm). If POS is omitted, the current

position is returned
· stage speed SP - sets a specific speed SP (in mm/sec). If SP is omitted, the current speed is

returned
· stage scan - working with the scanning area 

o stage scan - returns start and end position of the scanning area
o stage scan START END - sets the start and end position of the scan area
o stage scan start - moves the stage to the current START position
o stage scan end - moves the stage to the current END position



perClass Mira 5.0 Documentation

174 / 211

· stage cycle - starts cycling between START and END scan area
· stage white - working with the area of the white reference

o stage white - returns start and end position of the white reference
o stage white START END - sets the start and end position of the white reference
o stage white start - moves the stage to the current white reference START position
o stage white end - moves the stage to the current white reference END position

Camera specific commands - Headwall MV.X
· mvx Shutter.Close - close MV.X shutter
· mvx Shutter.Open - open MV.X shutter

Camera specific commands - Specim Specsensor SDK
This specific interface mirrors command functionality of SpecSensor SDK. Please refer to SpecSensor
documentation on the SDK commands for more details.

Basic commands to open and close the shutter:
· specsensor Shutter.Open - open the shutter
· specsensor Shutter.Close - close the shutter

Extended commands
· specsensor Shutter.IsOpen - return if the shutter is open
· specsensor Shutter.IsConnected - return if the shutter is connected.
· specsensor Shutter.IsToggle - return if the shutter is toggled (flipped)
· specsensor Shutter.IsToggle X - pass value to SpecSensor IsToggle

o the value can be "enable", "on" or "true"  or "disable", "off" or "false"
o Example: "specsensor Shutter.IsToggle enable"

Example communication using Tcl

This section shows simple communication with Application Server using Tcl command language. Tcl is a
very simple scripting and command language. 
For more information on Tcl, see 
· Official website: http://tcl.tk/
· Windows binary distribution can be found here: https://www.magicsplat.com/tcl-installer/index.html

Other scripting environments, like Python, should be able to control Application Server in very similar
fashion. The Tcl is chosen here for its simplicity to demonstrate control principles as it can getestablish
communication using only few socket configuration commands.

Setting up Application Server communication in Tcl

Creating a socket on localhost port 51234:

% set so [socket localhost 51234]

sock000001F0932F2CB0

Configuring the socket buffering to line:

% fconfigure $so -buffering line

Defining a new command called sendcmd that writes content into the socket, reads and returns the
response:

% proc sendcmd {so cmd} {puts $so $cmd;gets $so data; return $data}

http://tcl.tk/
https://www.magicsplat.com/tcl-installer/index.html


perClass Mira 5.0 Documentation

175 / 211

Controlling Application Server from Tcl

We can now send commands to the Application Server and receive the responses:

% sendcmd $so {acq start}

ok;acq start;starting...

% sendcmd $so {acq stop}

ok;acq stop;stopped

Receiving information on object detections

The Application Server provides the second TCP/IP channel where object detections are announced. We
open the second Tcl comand shell, create an async socket and define a call back function that would be
executed, when any data arrives. In the callback, we print the data sent by Application Server to the
standard output. If the socket is closed, we close the processing.

We can past the following code to the Tcl command shall:

proc readData {serverChannel} {

global end

set noOfChars [gets $serverChannel data]

if {$noOfChars!=-1} {

puts "read: $data"

}

if {[eof $serverChannel]} {

close $serverChannel

set end 1

}

}

set sd [socket -async localhost 51300]

fconfigure $sd -blocking 0

fileevent $sd readable [list readData $sd]

vwait end

The first part defines the callback function. Then the socket is created and configured as non-blocking. The
event callback is set on the socket connecting our callback function. 
Finally, we enter event loop using "variable wait" vwait command. It blocks the system processing events
until the variable "end" is created.
The complete application setup is shown in the following screenshot. Apart of the perClass Mira window, we

have two separate shells (one Tcl shell to issue commands and one shell receiving object detections

). .Once we connect in to the object detection channel on port 51300, perClass Mira Output

window displays the connection details . In the command shell , we can now start the acquisition
using "acq start" command (note that also "acq info enable" cammand was run to enable object reporting
and the display was set to show objects (not shown on the screenshot). 

As soon as the objects are detected in the live stream , the respective messages are sent over the

object detection socket, captured in and printed to the standard output.



perClass Mira 5.0 Documentation

176 / 211

perClass Mira Stage
perClass Mira Stage is a linear lab-scanning kit tightly integrated with perClass Mira. It supports a range of
line-scan and snapshot spectral cameras through easy-to-exchange mounts.

The end-user product name is "perClass Mira Stage", a bundle of the "perClass Stage" hardware and
"perClass Mira" software. This is to emphasize that the perClass Stage hardware is fully operated from the
perClass Mira software.

WARNING! Assembly should be performed by instructed personnel. Using excessive force for assembling
or disassembling the stage has a risk of damage. All parts are designed such that the Linear stage can be
assembled without the use of (power)tools. The interconnection is made using manual clamp levers.



perClass Mira 5.0 Documentation

177 / 211

Assembling instructions

1. Remove all components from the Peli Case enclosure
2. Place the stage (base) on a flat surface
3. Slide the vertical post, with the alignment plate at the rear, in the stage slot
4. Tighten the vertical post by attaching the manual lever
5. Slide the light frame in the vertical post
6. Tighten the light frame with an M8 T-nut and manual clamping lever
7. Connect each light module using an M6 manual clamping lever from the inside of the light frame, to the

light module thread
8. Slide the camera mount in the vertical post
9. Tighten the camera mount with an M8 T-nut and manual clamping lever
10. Adjust all parts if needed and secure all connections safely
11. Connect a camera to the camera mount
12. Connect the light power cables and secure the loose cables
13. Power the perClass stage



perClass Mira 5.0 Documentation

178 / 211

Disassembling instructions

1. Depower the perClass Stage
2. Wait for the light modules to be of reasonable temperature
3. Disconnect all cables
4. Disconnect the camera mount plus camera
5. Disconnect the light modules
6. Disconnect the Light frame from the vertical post
7. Disconnect the Vertical post from the perClass Stage by unscrewing the manual lever (do not tighten

the manual lever after removing the vertical post).



perClass Mira 5.0 Documentation

179 / 211



perClass Mira 5.0 Documentation

180 / 211

Supported cameras

Headwall
· MV.C VNIR using MV.C holder
· MV.C NIR using MV.C holder
· MV.X using MV.X dedicated holder

· Any camera using 1/4 standard mount

Supported spectral cameras

Cubert
· All cameras supported by CUVIS 3.2 and later SDK such as Cubert Ultris S5, X20



perClass Mira 5.0 Documentation

181 / 211

HAIP
· BlackIndustry supported fully for live acquisition and processing
· BlackMobile supported to synchronize data from on-board storage and model building (via perClass

project type)

Headwall
· MV.C VNIR
· MV.C NIR
· MV.X VNIR

o perClass Mira models can be deployed for on-board processing on the MV.X
o MV.X cameras can be used as generic acquisition devices using Pleora eBUS (separate

license needed) 
· Cameras supported by the legacy HyperspecIII SDK, currently VNIR and NIR systems currently

excluding the SWIR camera 

Imec
· For acquisition and processing: Imec Mosaic devices such as RedNIR and SWIR
· Starting from acquired scans: Imec SNAPSCAN  

Inno-spec
· RedEye2 supported using 

o Pleora eBUS (separate license needed)
o Photonfocus SDK

Resonon
· Both VNIR and NIR systems using

o the legacy Resonon SDK
o NIR systems supported through AlliedVision VimbaC SDK
o experimental support for VNIR systems using the Basler Pylon SDK

Silios
· All Silios camera supported by Silios SDK

Specim
· All cameras supported through Specim SpecSensor SDK (such as Specim FX10, FX17, FX50, SWIR)
· When using Pleora eBUS directly, all cameras that are GenICam compatible (such as FX10,FX17)

Unispectral
· Unispectral MonarchII

Cubert

In order to acquire data using Cubert cameras in perClass Mira, Cubert CUVIS SDK needs to be installed.

Installing CUVS SDK:
· Install CUVIS 3.2.0
· Make sure the directory containing “cuvis.dll” is in the PATH environment variable: “C:\Program

Files\Cuvis\bin”
· Make sure the following directories exist: For newer plugins (may need to copy from CubertFuchsia):

o C:\Program Files\Cuvis\factory
o C:\Program Files\Cuvis\user



perClass Mira 5.0 Documentation

182 / 211

Connecting to the camera
· Make sure the property “ULTRIS5_GevSCPD” is set to “10000” in “C:\Program

Files\Cuvis\user\settings\ultris5.settings”
· Go to the ethernet adapter settings and setup a static IP address

o Set the IP to 192.168.200.5 (or anything in 192.168.200.0/24, except the device IP address)
o Set the subnet mask to 255.255.255.0
o If required set the gateway to 192.168.200.254 (or anything in 192.168.200.0/24, except the

device and your IP address)
o You may set the IP and subnet using this command from Windows cmd shell, started as

Administrator

netsh interface ip set address name="Ethernet" static 192.168.200.5

255.255.255.0 

Extra hints
· Disable the power saving options for the ethernet port, for instance

o Energy-Efficient Ethernet
o Green Ethernet
o Power Saving Mode

· Make sure firewall is not blocking perClass Mira on public networks
· Make sure that there are no other Cubert plugin versions in the Mira installation directory

Pleora eBUS

perClass Mira supports acquisition from eBUS 5.1, 6.1 and 6.3. Note that only one eBUS release can be
installed at a time. It is adviced to use the newest release available.

· Install Pleora eBUS Runtime 
o You may download Pleora eBUS Runtime 6.3 here 

· Computer restart is needed after eBUS installation in order to make kernel drivers active
· Make sure that no machine vision or camera software is providing additional, incompatible, version of

Pleora eBUS.
o Specifically, make sure that Specim Specsensor or Imec SDK are not on the path

TIP:  You may append a string to each of the paths in system Path environment variable to make it not
found. For example appending _DISABLED. This allows you to easily bring these dependencies back when
you wish to use other camera types

Headwall

Headwall MV.X

Headwall MV.X integrated system may be used together with perClass Mira in two different modes:
1. As a standalone camera, using Pleora eBUS
2. Deploying solutions, built in perClass Mira, onboard of the MV.X unit using the integrated perClass Mira

Runtime

Standalone camera use
· Pleora eBUS should be installed
· Connect Ethernet cable to port 2 on the MV.X unit
· Set the computer IP to 10.0.65.1 (or anything in 10.0.65.0/24 range, except 10.0.65.50 that is

dedicatet to the MV.X web interface)
o Set the subnet mask to 255.255.255.0
o If required set the gateway to 10.0.65.254 (or anything in 10.0.65.0/24, except 10.0.65.50 and

your IP address)

https://we.tl/t-0UBp0DQen6


perClass Mira 5.0 Documentation

183 / 211

On-board processing using perClass Mira Runtime
· Solutions, exported from perClass Mira can be run on-board of the MV.X system using the integrated

runtime
o Export the classification model using Classifier / Export classifier as a pipeline / perClass

Mira Runtime (single precision) command

Headwall MV.C NIR

Installation instructions

· Install Pleora eBUS 6.1 or 5.1

Network interface settings
· Go to the ethernet adapter settings and setup a static IP address

o Set the IP to 169.254.1.1 (or anything in 169.254.0.0/16, except the device IP address)
o Set the subnet mask to 255.255.0.0
o If required set the gateway to 169.254.254.254 (or anything in 169.254.0.0/16, except the

device your IP address)

Avoiding dropped frames
· Disable the power saving options for the ethernet port

o Energy-Efficient Ethernet
o Green Ethernet
o Power Saving Mode

· Make sure no firewall or security application is blocking perClass Mira application

Headwall MV.C VNIR

Installation instruction for Headwall MV.C VNIR camera

· Download and install Ximea xiAPI SDK: https://www.ximea.com/support/wiki/apis/xiAPI
· Put the C:\XIMEA\API\xiAPI path to System Path variable:

o Open Windows Settings, fill "env" and select Edit environment variables for your account
o Edit the Path environment variable
o Make sure the C:\XIMEA\API\xiAPI directory is on the path
o Start perClass Mira application again for the change to take effect

Troubleshooting

Camera returns -503 error in perClass Mira
This may be cased by improper USB connection. Please make sure the camera is connected directly to
the PC, not to a USB hub. If possible, try different USB connections.

Resonon

perClass Mira supports Resonon cameras through Resonon SDK provided by camera distributor or
Resonon Inc.

In perClass Mira installation, two separate acquisition plugins are included, one for the VNIR Basler-based



perClass Mira 5.0 Documentation

184 / 211

cameras and one for the NIR AlliedVision-based sensors.

In order to to acquire data from Resonon camera:
· Install Resonon SDK (3.8 or higher)
· Add path to C:\Program Files\ResononAPI\bin64 directory to Windows Path environmental variable

For NIR cameras
· the AlliedVision VimbaC SDK needs to be installed (it is also a part of Resonon SDK installation)
· the following path needs to be present in Windows Path environmental variable: C:\Program Files\Allied

Vision\Vimba_6.0\VimbaC\Bin\Win64

perClass Camera API
Versioning
· miraacq_GetVersion

· miraacq_GetAPIVersion

Initialization and cleanup
· miraacq_Init

· miraacq_Release

Error handling
· miraacq_GetErrorCode

· miraacq_GetErrorMsg

Acquisition device selection
· miraacq_ScanDevices

· miraacq_GetDeviceCount

· miraacq_GetDeviceName

· miraacq_OpenDevice

· miraacq_CloseDevice

Acquisition initialization
· miraacq_InitializeAcquisition

· miraacq_GetFrameSize

· miraacq_GetFrameWidth

· miraacq_GetFrameHeight

· miraacq_GetFrameBands

· miraacq_GetFrameDataType

· miraacq_GetFrameDataLayout

Wavelength and spectral resampling control (optional)
· miraacq_CanReturnWavelengths

· miraacq_GetFrameWavelength

· miraacq_SetResamplingWavelengthCount

· miraacq_SetResamplingWavelength

· miraacq_SetResampling

Running acquisition and obtaining data
· miraacq_StartAcquisition

· miraacq_GetFrame

· miraacq_StopAcquisition

Setting acquisition parameters
· miraacq_SetExposure

· miraacq_GetExposure

· miraacq_SetFrameRate

· miraacq_GetFrameRate



perClass Mira 5.0 Documentation

185 / 211

miraacq_Init

Initialize the camera acquisition environment.

makernel* miraacq_Init(const char* path)

Input: Path to a directory with a license file
Output: Runtime environment pointer.

Description:

The miraacq_Init function initializes the camera acquisition environment. It returns a pointer used for any
other API function that interacts with the library. We refer to this pointer a "runtime pointer" in the acuisition
library reference. Please note this is referring to "acquitision runtime" which differs from "processing
runtime" of perClass Mira. The processing runtime is initialized by mira_Init function. Its API is described
here.

The acquisition runtime exposes data acquisition from a camera via specific acquisition plugins. Each
acquisition plugin name starts, by convention, with miraacq_ string followed by the plugin type and version
number. For example, the plugin exposing Headwall MV.C VNIR camera based on Ximea API is named
miraacq_ximea_1.6.0.dll

The input is a path to a directory where a license file with .lic extension can be found. Pass "." for the
current directory.

After initialization, miraacq_GetErrorMsg provides welcome string listing software version or error
message.

Example: 

    makernel* pma=miraacq_Init(".");

    printf("Init: %s", miraacq_GetErrorMsg(pma));

    if( pma==NULL ) return;

 

miraacq_GetVersion

Return version of the acquisition runtime

const char* miraacq_GetVersion()

Input: None

Output: Version string 

Description:
miraacq_GetVersion returns version string together with the release date.

Example:
    

    const char* str=miraacq_GetVersion();

    printf("Version: '%s'\n",str);

Output:

Version: '4.2 (16-feb-2023)'

miraacq_GetAPIVersion

Return API version information

const char* miraacq_GetAPIVersion(int* pApi,int* pStep,int* pRev);



perClass Mira 5.0 Documentation

186 / 211

Input: 
pApi - pointer to integer: Major outer API for all supported plugins
pStep - pointer to integer: Functionality version of this specific plugin (perClass Mira functionality changes)
pRev - pointer to integer: Revision of the functionality (only the plugin changes)

Output: Full version string including perClass Mira build info, lugin info and third party SDK version (if
linked)

Description:
miraacq_GetAPIVersion returns full version string including information about the plugin and the linked
third-party SDK used. Via three integer pointers, it also provides the numerical API versioning.

Example:
    

    int api,rev,step;

    const char* str=miraacq_GetAPIVersion(&api,&rev,&step);

    printf("API version: %d.%d.%d (%s)\n",api,rev,step,str);

Output:

API version: 1.6.0 (perClass Mira 4.2 (16-feb-2023) build 1548, Ximea plugin

1.6.0 (Ximea API 4.24.00.03))

miraacq_GetRecorderType

Return string name of the acquisition backend

const char* miraacq_GetRecorderType()

Input: None

Output: Recorder (acquisition plugin) type string 

Description:
miraacq_GetRecorderType returns version string together with the release date.

Example:
    

    const char* str=miraacq_GetRecorderType();

    printf("Type: '%s'\n",str);

Output:

Type: 'Ximea'

miraacq_GetErrorCode

Return error code

int miraacq_GetErrorMsg(makernel* pma)

Input: Runtime environment pointer

Output: Error code

Description:
miraacq_GetErrorCode returns error code. For a specific string description,
miraacq_GetErrorMsg

miraacq_GetErrorMsg

Returns error message.



perClass Mira 5.0 Documentation

187 / 211

const char* mira_GetErrorMsg(makernel* pma)

Input: Runtime environment pointer

Output: Error message string

Description:
miraacq_GetErrorMsg returns error message as string. For a specific error code, use
miraacq_GetErrorCode

miraacq_ScanDevices

Scan available acquisition devices

int mira_ScanDevices(makernel *pma)

Input: 
· Runtime environment pointer pmr

Output: Result: MIRA_OK or error code

Description:
miraacq_ScanDevices searches for available acquisition devices. After calling
miraacq_ScanDevices, one can get device count using miraacq_GetDeviceCount and names with
miraacq_GetDeviceName.

Example: 
    MIRAACQ_CHECK( miraacq_ScanDevices(pma) );

    const int devCount=miraacq_GetDeviceCount(pma);

    printf("\n%d devices:\n",devCount);

    for(int i=0;i<devCount;i++) {

        printf("%d : %s\n",i, miraacq_GetDeviceName(pma,i));

    }

...

Error:

    if( res!=MIRA_OK ) {

        printf("Error %d: %

s",miraacq_GetErrorCode(pma),miraacq_GetErrorMsg(pma));

    }

    miraacq_Release(pma);

The MIRAACQ_CHECK macro checks the output result. If error occurs, the program flow is terminated. See
miracq.h definition. Note that the MIRAACQ_CHECK macro expects an Error label defined. The following
code can display the error message and release the runtime.

miraacq_GetDeviceCount

Returns the number of acquisition devices found

int miraacq_GetDeviceCount(makernel* pma)

Input: Runtime environment pointer

Output: Number of devices found

Description:
miraacq_GetDeviceCount returns the number of devices found by miraacq_ScanDevices. 

miraacq_GetDeviceName

Returns the name of a specific acquisition device



perClass Mira 5.0 Documentation

188 / 211

const char* miraacq_GetDeviceName(makernel* pma,int deviceInd)

Input: 
· Runtime environment pointer
· Device index

Output: String name of a device

Description:
miraacq_GetDeviceName returns the name for a specific device. Before using
miraacq_GetDeviceName or miraacq_GetDeviceCount, the device list needs to be constructed by
miraacq_ScanDevices. 

miraacq_OpenDevice

Opens specific acquisition device

int miraacq_OpenDevice(makernel* pma,int devInd)

Input: 
· Runtime environment pointer
· Device index

Output: Result code (MIRA_OK or error)

Description:
miraacq_OpenDevice opens the specified acquisition device. The device list needs to be constructed
by miraacq_ScanDevices. 

Example: 
    MIRAACQ_CHECK( miraacq_ScanDevices(pma) );

    int deviceInd=0; // here we open the device 0

    MIRAACQ_CHECK( miraacq_OpenDevice(pma,deviceInd) );

    printf("Device opened: %d '%

s'\n",deviceInd,miraacq_GetDeviceName(pma,deviceInd));

The MIRAACQ_CHECK macro checks the output result. See the usage example in
miraacq_ScanDevices and miraacq.h for details.

miraacq_CloseDevice

Closes specific acquisition device

int miraacq_CloseDevice(makernel* pma,int devInd)

Input: 
· Runtime environment pointer
· Device index

Output: Result code (MIRA_OK or error)

Description:
miraacq_CloseDevice closes the specified acquisition device. Device needs to be previously openned
using miraacq_OpenDevice

miraacq_DeviceIsSnapshot

Returns if a currently openned device is snapshot camera



perClass Mira 5.0 Documentation

189 / 211

int mira_DeviceIsSnapshot(makernel* pma);

Input: 
· Runtime environment pointer

Output: 1 if the currently openned device is a snapshot or 0 if not

This function returns the type of currently openned device. If the device is a snapshot camera (providing a
full spectral cube with all bands for all pixels in a single call) or not. Devices that are not snapshots are "line-
scans" i.e. cameras that provide single pixel line and all spectral bands. To form a cube, a line scan camera
needs to acquire multiple spectral frames.
Therefore, while the width (pixel count) and band count of line-scan camera is defined by the sensor, its
height is 1 (single frame at a time).

miraacq_InitializeAcquisition

Initializes the acquisition

int miraacq_InitializeAcquisition(makernel* pma)

Input: 
· Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
miraacq_InitializeAcquisition is needed in order to define geometry and data type of data
coming from the sensor. 

miraacq_GetFrameSize

Get the size of the acquired image in bytes

int miraacq_GetFrameSize(makernel* pma);

Input: 
· Runtime environment pointer

Output: Size in bytes width if > 0 or an error code if < 0

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns the number of bytes returned by the sensor during acqusition.

miraacq_GetFrameWidth

Get the width of the data returned by the sensor

int miraacq_GetFrameWidth(makernel* pma);

Input: 
· Runtime environment pointer

Output: Image width if > 0 or an error code if < 0

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns the width (number of pixels) returned by the sensor during acqusition.



perClass Mira 5.0 Documentation

190 / 211

miraacq_GetFrameHeight

Get the height of the data returned by the sensor

int miraacq_GetFrameHeight(makernel* pma);

Input: 
· Runtime environment pointer

Output: Image height if > 0 or an error code if < 0

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns the height in pixels returned by the sensor during acqusition. For snapshot cameras, this
corresponds to the height of the cube returned in each acquisition step. For line-scans, this is fixed to 1 as
only one spectral frame is returned in each acquisition.

miraacq_GetFrameBands

Get the number of spectral bands of the data returned by the sensor

int miraacq_GetFrameBands(makernel* pma);

Input: 
· Runtime environment pointer

Output: Number of spectral bands if > 0 or an error code if < 0

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns the number of spectral bands returned in each acquisition step

miraacq_GetFrameDataType

Get the data type of the acquired image

int miraacq_GetFrameDataType(makernel* pma);

Input: 
· Runtime environment pointer

Output: Integer denoting the data type

ACQ_DATATYPE_UNKNOWN  0

ACQ_DATATYPE_UINT16   1

ACQ_DATATYPE_FLOAT    2

ACQ_DATATYPE_UINT8    3

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns the data type of content returned in acquisition.

miraacq_GetFrameDataLayout

Get the data layout of the acquired image

int miraacq_GetFrameDataLayout(makernel* pma);

Input: 
· Runtime environment pointer



perClass Mira 5.0 Documentation

191 / 211

Output: Integer denoting the data layout in memory

ACQ_DATALAYOUT_BIP      1 /* spectrum-by-spectrum (dimensions: bands-width-

height) */

ACQ_DATALAYOUT_BIL      2 /* frame-by-frame (dimensions: width-bands-height)

*/

ACQ_DATALAYOUT_BSQ      3 /* spatial frame by frame (dimensions: width-height-

bands) */

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns the data layout of image returned in acquisition.

For line-scans, typical layout is BIL where all pixels (width) and all bands are returned each time. Spectral
cube is created by collating multiple such spectral frames, each with unit height.

For snapshot systems that perform band scanning, each band as appended internally. This results in BSQ
data layout (width x height x bands).

For some snapshot systems, the data is already reorganized into BIP layout where the spectral data of
each pixel is located next to each other in memory (bands x width x height).

miraacq_CanReturnWavelengths

Check if the device can return the wavelength information for each spectral band

int miraacq_CanReturnWavelengths(makernel* pma);

Input: 
· Runtime environment pointer

Output: 1 if the device can return wavelength info per band and 0 otherwise

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
returns information if the device can provide wavelength information per spectral band.

miraacq_GetFrameWavelength

Return wavelength in nanometers for a specific spectral band

int miraacq_GetFrameWavelength(makernel* pma,int bandInd,double* pWavelength);

Input: 
· Runtime environment pointer
· bandInd - integer index of a spectral band (zero-based i.e. 0.. number of bands -1 )
· pWavelength- pointer to a double-precision value (to output the wavelength value in nanometers)

Output: Result: MIRA_OK or error code

After the acquisition is successfully initialized by miraacq_InitializeAcquisition this function
allows one to iterate over all spectral bands and retrieve the respective wavelength information.

miraacq_SetResamplingWavelengthCount

Defines how many output wavelengths will be provided

int miraacq_SetResamplingWavelengthCount(makernel* pma,int count);



perClass Mira 5.0 Documentation

192 / 211

Input: 
· Runtime environment pointer
· Integer: Number of output wavelengths after resampling

Output: Result code (MIRA_OK or error)

This function starts the resampling step. By resampling, we refer to spectral resampling or interpolation.
The user may specify output wavelength list shared by all devices. This function initiates the procedure to
define resampling by specifying how many outputs wavelengths will be provided. It should be followed by
miraacq_SetResamplingWavelength calls to provide individual wavelength values in nanometers.

miraacq_SetResamplingWavelength

Defines output wavelength value

int miraacq_SetResamplingWavelength(makernel* pma,int bandInd,double

wavelength);

Input: 
· Runtime environment pointer
· Integer: Index of an output band for which we're setting the wavelength value
· Double: Wavelength value in nm

Output: Result code (MIRA_OK or error)

This function specifies wavelength values for desired output bands. The band indices are zero based: 0 ..
count -1, where the count is defined using miraacq_SetResamplingWavelengthCount function.
The wavelength values are provided in nanometers. 

In order to use spectral resampling, the sensor needs to be calibrated, i.e. it needs to provide the mapping
of spectral bands (pixels) to wavelengths.
Wavelength values, provided by this function, must also lay within the range of device wavelengths. This is
because spectal interpolation not extrapolation is adopted.

miraacq_SetResampling

Enables or disables resampling

int miraacq_SetResampling(makernel* pma,int enable);

Input: 
· Runtime environment pointer
· Integer: 1 to enable or 0 to disable resampling

Output: Result code (MIRA_OK or error)

This function enables or disables spectral resampling. The output wavelengths need to be specified using
miraacq_SetResamplingWavelengthCount and miraacq_SetResamplingWavelength
functions.

miraacq_StartAcquisition

Starts the acquisition

int miraacq_StartAcquisition(makernel* pma)

Input: 
· Runtime environment pointer

Output: Result code (MIRA_OK or error)



perClass Mira 5.0 Documentation

193 / 211

Description:
miraacq_StartAcquisition starts the acquisition process. The acquisition needs to be succesfully
initialized using miraacq_InitializeAcquisition.

miraacq_GetFrame

Return new spectral data from sensor

int miraacq_GetFrame(makernel* pma, void* pBuf,size_t* pFrameID,int timeOut );

Input: 
· Runtime environment pointer
· Pointer to external buffer with raw spectral frame data
· Pointer to size_t value to store frame id of the returned frame
· Integer timeout

Output: Result code (MIRA_OK or error)

Description:
miraacq_GetFrame returns new data from spectral camera. The function can be only called after
acquisition is initialized and started. The provided buffer pointed to by pBuf needs to hold at least number of
bytes returned by miraacq_GetFrameSize. The content of pFrameID is set to the ID of a returned
frame. On systems that support internal frameID, this value can be used for dropped frame detection. 

MV.C VNIR:
The timeout value needs to be non-zero.

miraacq_StopAcquisition

Starts the acquisition

int mira_StopAcquisition(mrkernel* pmr)

Input: 
· Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
mira_StopAcquisition stops the acquisition process. Statistics on number of processed frames,
speed per frame and frame-rate is available via a subsequent mira_GetErrorMsg call.

Example:
Average alg time: 2.79676 ms/frame (357.557 fps), processed 1500 frames, first

500 skipped for warm-up.

miraacq_SetExposure

Sets the exposure time

int miraacq_SetExposure(makernel* pma,double val);

Input: 
· Runtime environment pointer
· Double: Exposure value in ms

Output: Result code (MIRA_OK or error)

This function sets the exposure (integration time) in miliseconds. It can be used only after
miraacq_InitializeAcquisition. It may be using during running acquisition (after



perClass Mira 5.0 Documentation

194 / 211

miraacq_StartAcquisition).

miraacq_GetExposure

Gets the exposure time

int miraacq_GetExposure(makernel* pma,double* pVal);

Input: 
· Runtime environment pointer
· pointer to double: Output value

Output: Result code (MIRA_OK or error)

This function gets the current exposure (integration time) value in miliseconds. It can be used only after
miraacq_InitializeAcquisition. It may be using during running acquisition (after
miraacq_StartAcquisition).

miraacq_SetFrameRate

Sets the frame rate in frames per second

int miraacq_SetFrameRate(makernel* pma,double val);

Input: 
· Runtime environment pointer
· Double: Frame rate value in ms

Output: Result code (MIRA_OK or error)

This function sets the frame raw (integration time) in frames per second. It can be used only after
miraacq_InitializeAcquisition. It may be using during running acquisition (after
miraacq_StartAcquisition).

miraacq_GetFrameRate

Gets the exposure time

int miraacq_GetFrameRate(makernel* pma,double* pVal);

Input: 
· Runtime environment pointer
· pointer to double: Output value

Output: Result code (MIRA_OK or error)

This function gets the current frame rate value in frames per second. It can be used only after
miraacq_InitializeAcquisition. It may be using during running acquisition (after
miraacq_StartAcquisition).

miraacq_Release

Release runtime internal session and clean resources.

void miraacq_Release(makernel* pma)

Input: 
· Runtime environment pointer



perClass Mira 5.0 Documentation

195 / 211

Output: None

Description:
miraacq_Release ends the session and releases all memory allocated by the runtime.

perClass Mira Runtime API
Initialization and cleanup
· mira_Init

· mira_Release

Error handling
· mira_GetErrorCode

· mira_GetErrorMsg

Computational device selection
· mira_RefreshDeviceList

· mira_GetDeviceCount

· mira_GetDeviceName

· mira_SetDevice

Loading model
· mira_LoadModel

· mira_LoadCorrection

Data processing - querrying input data parameters
· mira_GetInputWidth

· mira_SetInputWidth

· mira_GetInputHeight

· mira_GetInputBands

· mira_GetInputDataType

· mira_GetInputDataLayout

Data processing
· mira_SetSegmentation

· mira_StartAcquisition

· mira_ProcessFrame

· mira_ProcessCube

· mira_StopAcquisition

· mira_SaveImage

Processing results
Pixel classification
· mira_GetFrameDecisions

· mira_GetDecCount

· mira_GetDecName

· mira_GetDecColor

Object segmentation
· mira_GetMaskType

· mira_GetObjCount

· mira_GetObjDataInt

· mira_GetObjDataClassSize

· mira_GetObjDataClassFrac

· mira_SetMinObjSize

Regression
· mira_GetRegVarCount

· mira_GetRegVarName



perClass Mira 5.0 Documentation

196 / 211

· mira_GetObjDataRegOutput

· mira_GetFrameRegOutputVar

mira_Init

Initialize runtime environment.

mrkernel* mira_Init(const char* path)

Input: Path to a directory with a license file
Output: Runtime environment pointer

Description:

The mira_Init function initializes runtime environment. It returns a pointer used for any other API function
that interacts with the runtime.
The input is a path to a directory where a license file with .lic extension can be found. Pass "." for the
current directory.

After initialization, mira_GetErrorMsg provides welcome string listing software version or error
message.

Example: 

    mrkernel* pmr=mira_Init(".");

    printf("Init: %s", mira_GetErrorMsg(pmr));

    if( pmr==NULL ) return;

 

Error codes

-101   Passing NULL pointer
-102   mira_GetDeviceName: Device index out of bounds
-103   mira_StartAcquisition: Project not loaded
-104   mira_StartAcquisition: Classifier model not loaded

-110   mira_LoadModel: Error loading model from file
-111   mira_LoadModel: Wrong file format
-112   mira_LoadModel: Internal error when loading
-113   mira_LoadModel: File cannot be opened

-120   mira_saveImage: Label image does not exist

-130   mira_LoadCorrection: Loading meta-data from the correction scan failed.
-131   mira_LoadCorrection: Error loading dark reference data
-132   mira_LoadCorrection: Dark and White reference images have different width or band count.
-134   mira_LoadCorrection: Both dark and white reference scans need to be loaded.
-135   mira_LoadCorrection: Reference file not present
-136   mira_LoadCorrection: Unsupported data layout or data type

-140   Error switching to the computation device
-141   mira_RefreshDeviceList: Error setting CUDA backend
-142   mira_RefreshDeviceList: Error setting OpenCL backend
-143   mira_RefreshDeviceList: listNVIDIA and listOpenCL must be specified as 0 or 1 values

-150   Feature does not exist
-151   Wrong feature type requested

-160   Max number of objects per frame reached
-161   mira_GetObjData*: Object index out of bounds
-162   mira_GetObjData*: Class index out of bounds (0..9)
-163   mira_GetObjDataClassSize: Segmentation not set to required 'All foreground' mode.
-164   mira_GetMaskType: Object segmetation not defined



perClass Mira 5.0 Documentation

197 / 211

-170   mira_StartAcquisition: Acquisition already running
-171   mira_StopAcquisition: Acquisition not running
-172   mira_StartAcquisition: Object segmentation cannot proceed

-180   mira_GetDecName: Decision index out of bounds

-190   mira_SetForegroundClass: Foreground class index out of bounds

-201   mira_ProcessCube: Line-scan project type cannot process cubes
-202   mira_StartAcquisition: Label image dimension mismatch

-203   mira_ProcessCube: Missing image geometry description

-204   mira_ProcessFrame: Line-scan processing requires BIL layout

-205   mira_GetInputDataLayout: Undefined data layout
-206   mira_GetInputDataType: Undefined data type

-207   mira_ProcessCube: Unsupported project type

-208   mira_ProcessFrame: Unsupported data type
-208   mira_ProcessCube: Unsupported data type or data layout

mira_GetVersion

Return runtime version

const char* mira_GetVersion()

Input: None

Output: Version string 

Description:
mira_GetVersion returns version string together with the release date. For example "2.1 26-mar-2020".

mira_GetErrorCode

Return error code

int mira_GetErrorMsg(mrkernel* pmr)

Input: Runtime environment pointer

Output: Error code

Description:
mira_GetErrorCode returns error code. For a specific string description, mira_GetErrorMsg

mira_GetErrorMsg

Returns error message.

const char* mira_GetErrorMsg(mrkernel* pmr)

Input: Runtime environment pointer

Output: Error message string

Description:
mira_GetErrorMsg returns error message as string. For a specific error code, use
mira_GetErrorCode



perClass Mira 5.0 Documentation

198 / 211

mira_RefreshDeviceList

Fills the list of computational devices available

int miraacq_ScanDevices(makernel *pma)

Input: 
· Runtime environment pointer pma

Output: Result: MIRA_OK or error code

Description:
miraacq_ScanDevices searches for acquisition devices available. After calling
miraacq_ScanDevices, one can get device count using miraacq_GetDeviceCount and names with
miraacq_GetDeviceName.

Example: 
    MIRAACQ_CHECK( miraacq_ScanDevices(pma) );

    const int devCount=miraacq_GetDeviceCount(pma);

    printf("\n%d devices:\n",devCount);

    for(int i=0;i<devCount;i++) {

        printf("%d : %s\n",i, miraacq_GetDeviceName(pma,i));

    }

The MIRAACQ_CHECK macro checks the output result. If error occurs, the program flow is terminated. See
miraacq.h definition.

mira_GetDeviceCount

Returns the number of GPU devices found

int mira_GetDeviceCount(mrkernel* pmr)

Input: Runtime environment pointer

Output: Number of devices found

Description:
mira_GetDeviceCount returns the number of devices found by mira_RefreshDeviceList. 

mira_GetDeviceName

Returns the name of a specific computational device

const char* mira_GetDeviceName(mrkernel* pmr,int deviceInd)

Input: 
· Runtime environment pointer
· Device index

Output: String name of a device

Description:
mira_GetDeviceName returns the name for a specific device. Before using mira_GetDeviceName or
mira_GetDeviceCount, the device list needs to be constructed by mira_RefreshDeviceList. 

mira_SetDevice

Sets specific computational device

int mira_SetDevice(mrkernel* pmr,int deviceInd)



perClass Mira 5.0 Documentation

199 / 211

Input: 
· Runtime environment pointer
· Device index

Output: Result code (MIRA_OK or error)

Description:
mira_SetDevice sets specific computational device. The device list needs to be constructed by
mira_RefreshDeviceList. 

Example: 
    MIRA_CHECK( mira_RefreshDeviceList(pmr,1,0) );

    const int devCount=mira_GetDeviceCount(pmr);

    printf("\n%d devices:\n",devCount);

    for(int i=0;i<devCount;i++) {

        printf("%d : %s\n",i, mira_GetDeviceName(pmr,i));

    }

    int deviceInd=atoi(argv[1]);

    MIRA_CHECK( mira_SetDevice(pmr,deviceInd) );

    printf("Device selected: %d '%

s'\n",deviceInd,mira_GetDeviceName(pmr,deviceInd));

The MIRA_CHECK macro checks the output result. If error occurs, the program flow is terminated. See
perclass_mira.h definition.

mira_LoadModel

Loads classification model

int mira_LoadModel(mrkernel *pmr, const char* filename)

Input: 
· Runtime environment pointer
· Filename (.mira project file)

Output: Result code (MIRA_OK or error)

Description:
mira_LoadModel loads a classification model from .mira project file.

mira_LoadCorrection

Loads white and dark correction data from disk

int mira_LoadCorrection(mrkernel *pmr, const char* dirname, const char

*scanname);

Input: 
· Runtime environment pointer
· Dirname - a name of a directory containing a scan directory
· Scanname - a name of a scan directory

Output: Result code (MIRA_OK or error)

Description:

For Headwall project type:
Correction information is assumed to be in whiteReference and darkReference scans. To load references,
pass the path to a directory containing the whiteReference and darkReference ENVI scans. The third



perClass Mira 5.0 Documentation

200 / 211

argument is NULL.

Header files must have .hdr extensions. Both spectral cubes can have arbitrary extensions. Reference
cubes must be in BIL data layout. Both uint16 and float data types are supported.  

Example:
res = mira_LoadCorrection(pmr,"path_to_dir_with_references",NULL);

In this way, both reference files are loaded at the same time.

For Specim project type:
mira_LoadCorrection loads dark and white correction information from dirname directory. The
assumption is the a scanname is a name of a directory inside the dirname directory and that it conforms
Specim LUMO scanner directory structure. This means that inside scanname directory is a capture sub-
directory. Inside the capture sub-dir, the following files are needed:
· WHITEREF_scanname.hdr
· WHITEREF_scanname.raw
· DARKREF_scanname.hdr
· DARKREF_scanname.raw
· scanname.hdr

The scanname.hdr defines wavelengths, band cound and pixel count of a scan. Note, that the
scanname.raw is not needed when loading correction.

All ENVI cubes are supposed to be in BIL data layout and use uint16 data type.

If mira_LoadCorrection is not called, the assumption is that the input data stream is already
reflectance corrected and in float data type. This can be checked using mira_GetInputDataType.

mira_SetMinObjSize

Set the minimum object size for segmentation

int mira_SetMinObjSize(mrkernel *pmr,int minSize);

Input: 
· Runtime environment pointer
· minSize - minimum object size in pixels

Output: Result code (MIRA_OK or error)

Description:
mira_SetMinObjSize sets the minimum object size in pixels. Objects with size larger or equal than
minSize are reported.

mira_SetSegmentation

Set the minimum object size for segmentation

int mira_SetSegmentation(mrkernel *pmr,int enable);

Input: 
· Runtime environment pointer
· enable - flag is to enable (1) or disable (0) object segmenttion

Output: Result code (MIRA_OK or error)

Description:
mira_SetSegmentation enables or disables object segmentation. For all type of projects it is disabled



perClass Mira 5.0 Documentation

201 / 211

by default (Note: before 2.3, it was enabled by default for line-scan projects).. Use before starting the
acquisition. Note, that the model needs to have some class or classes flagged as foreground to perform
segmentation.

mira_GetInputWidth

Get the expected width of the input image stream

int mira_GetInputWidth(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Input image width if > 0 or an error code if < 0

The image width in the line scan use case is the number of pixels of one line i.e. the pixels across the belt.

mira_SetInputWidth

Set the width of the input image stream

int mira_SetInputWidth(mrkernel* pmr, int width);

Input: 
· Runtime environment pointer
· Input width of the data stream

Output: Result code (MIRA_OK or error)

Input width of the data stream may be set manually. The width overrules the setting in the loaded project.

mira_GetInputHeight

Get the expected height of the input image stream

int mira_GetInputHeight(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Input image height if > 0 or an error code if < 0

This call is only meaningful in snapshot use-case where entire spectral cube is to be processed with
mira_ProcessCube function.

mira_GetInputBands

Get the expected number of spectral bands of the input image stream

int mira_GetInputBands(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Input band count if > 0 or an error code if < 0

This call returns the number of spectral bands expected in each pixel.



perClass Mira 5.0 Documentation

202 / 211

mira_GetInputDataType

Get the expected data type in the input image stream

int mira_GetInputDataType(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Input data type if >= 0 or an error code if < 0

MIRA_DATATYPE_UNKNOWN  0
MIRA_DATATYPE_UINT16   1
MIRA_DATATYPE_FLOAT    2
MIRA_DATATYPE_UINT8    3

This call returns the data type expected in the input image stream based on the loaded model.

mira_GetInputDataLayout

Get the expected data layout of the input image stream

int mira_GetInputDataLayout(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Input data layout if >= 0 or an error code if < 0

MIRA_DATALAYOUT_UNKNOWN  0
MIRA_DATALAYOUT_BIP             1           /* spectrum-by-spectrum (dimensions: bands-width-height) */
MIRA_DATALAYOUT_BIL              2          /* frame-by-frame (dimensions: width-bands-height) */
MIRA_DATALAYOUT_BSQ            3          /* spatial frame by frame (dimensions: width-height-bands) */

This call returns the data layout expected in the input image stream based on the loaded model.

mira_GetMaskType

Get the mask type of the loaded object segmentation model

int mira_GetMaskType(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Input data layout if >= 0 or an error code if < 0

MIRA_MASK_EACH_FOREGROUND  1  
MIRA_MASK_ALL_FOREGROUND     2  

This call returns the mask type for the loaded model. The 'each-foreground' type is used for single material
per object situations (object detection). The 'all-foreground' mask is used for complex objects composed of
multiple materials where the union of classes defines object mask (object classification). An example: A
potato can have healthy flesh or rotten defect - these are the trained classes. The segmentation mask is set
of 'all-foreground' and, therefore, entire piece of potato is segmented out. For each object, perClass Mira
Runtime provides pixel count for each foreground class. This allows object sorting based on composition.



perClass Mira 5.0 Documentation

203 / 211

mira_StartAcquisition

Starts the acquisition

int mira_StartAcquisition(mrkernel* pmr)

Input: 
· Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
mira_StartAcquisition starts the acquisition process. Computational device must be defined, model
loaded and correction information defined.
Individual frames can then be processed using mira_ProcessFrame

mira_ProcessFrame

Process a single individual raw spectral frame from a line-scan camera

int mira_ProcessFrame(mrkernel* pmr, void* pData);

Input: 
· Runtime environment pointer
· Pointer to external buffer with raw spectral frame data

Output: Result code (MIRA_OK or error)

Description:
mira_ProcessFrame passes data of a raw spectral frame from a line-scan camera. Acquisition process
need to be running (started using mira_StartAcquisition). 
The input data stream from a line scan camera is expected to be in BIL layout (pixels on the spatial line
times spectral bands). The expected geometry and data type are defined by the loaded solution. This
information can be queried by the mira_GetInputWidth,  mira_GetInputBands, and
mira_GetInputDataType.

 After a frame is processed,  per-pixel decisions may be read out using mira_GetFrameDecisions or
object information extracted using mira_GetObj* functions.

mira_ProcessCube

Process a single spectral cube

int mira_ProcessCube(mrkernel* pmr, void* pData);

Input: 
· Runtime environment pointer
· Pointer to external buffer with raw spectral frame data

Output: Result code (MIRA_OK or error)

Description:
mira_ProcessCube passes data of a entire spectral cube. Acquisition process need to be running
(started using mira_StartAcquisition). 
The expected geometry and data type are defined by the loaded solution. This information can be queried
by the mira_GetInputHeight, mira_GetInputWidth,  mira_GetInputBands,
mira_GetInputDataLayout and mira_GetInputDataType.

After a cube is processed,  per-pixel decisions may be read out using mira_GetFrameDecisions or
object information extracted using mira_GetObj* functions.



perClass Mira 5.0 Documentation

204 / 211

mira_StopAcquisition

Starts the acquisition

int mira_StopAcquisition(mrkernel* pmr)

Input: 
· Runtime environment pointer

Output: Result code (MIRA_OK or error)

Description:
mira_StopAcquisition stops the acquisition process. Statistics on number of processed frames,
speed per frame and frame-rate is available via a subsequent mira_GetErrorMsg call.

Example:
Average alg time: 2.79676 ms/frame (357.557 fps), processed 1500 frames, first

500 skipped for warm-up.

mira_GetFrameDecisions

Returns a pointer to pixel decisions on the last processed line

const unsigned char *mira_GetFrameDecisions(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Pointer to decisions on the last processed line

Description:
mira_GetFrameDecisions returns pointer to decisions at the last processed line. The values are zero-
based indices. Class name corresponding to each index can be obtained using mira_GetDecName

mira_GetDecCount

Returns the number of decisions provided by the classifier

int mira_GetDecCount(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Number of decisions provided by the classifier

Description:
mira_GetDecCount returns the number of decisions provided by the classifier. The decision index,
returned for each pixel by mira_GetFrameDecisions is a value smaller than decision count (zero-
based indexing).

mira_GetRegVarCount

Returns the number of regression variables available by the regression model

int mira_GetRegVarCount(mrkernel* pmr);

Input: 
· Runtime environment pointer

Output: Number of regression variables provided by the project



perClass Mira 5.0 Documentation

205 / 211

Description:
mira_GetRegVarCount returns the number of regression variables provided by the project. The
mira_GetRegVarName function can be then used to obtain specific variable names.

If the project does not contain any trained regression model, zero is returned. Therefore, this function can
be used to check whether regression modeling is enabled in the project. 

mira_GetRegVarName

Returns regression variable name given its index

const char* mira_GetRegVarName(mrkernel* pmr,int regVarInd);

Input: 
· Runtime environment pointer
· Regression variable index (0 to the count returned by mira_GetRegVarCount - 1)

Output: String name of a regression variable

Description:
mira_GetRegVarName returns the name for a specific regression variable.

Example:

    varCount=mira_GetRegVarCount(pmr);

    if( varCount>0 ) {

        /* regression variables */

        printf("\nregression vars:\n");

        for(int i=0;i<varCount;i++) {

            printf("%d : %s\n",i,mira_GetRegVarName(pmr,i));

        }

    }

Output:
regression vars:

0 : brix

1 : acidity

mira_GetObjDataRegOutput

Read information on segmented out objects

int mira_GetObjDataRegOutput(mrkernel* pmr, int entryInd, const float**

ppObjData);

Input: 
· Runtime environment pointer
· entryID - zero-based index of an object
· ppObjData - pointer to a pointer to a table with regression results per object (floating point_

Output: Result (MIRA_OK or error)

Description:
mira_GetObjDataRegOutput provides per-object regression output. The second parameter entryInd
is a zero-based object index (0..number of objects found -1). The third parameter ppObjData represents
regression values for a given object. The example below illustrates that we declare a pointer to float called
pObjData and initialize its value to NULL. In an acquisition loop, after processing a frame, if an object is
found, we call mira_GetObjDataInt in a for loop extracting object information. 
When we wish to access regression information for a given object, we use the
mira_GetObjDataRegOutput function. We pass the address of the pObjData to the



perClass Mira 5.0 Documentation

206 / 211

mira_GetObjDataInt, not the pointer itself. The actual regression value can be accessed using
pRegData[v], where v is the zero-based regression variable index.
No memory allocation is needed on the side of user code.

Example:

     int objCount=0;

const int varCount=mira_GetRegVarCount(pmr);

float* pRegData=NULL;

    while( frameInd<frames ) {

       res=mira_ProcessFrame(pmr,ptrf);

       objCount=mira_GetObjCount(pmr);

       if( objCount>0 ) {

            for(int i=0;i<objCount;i++) {

                /* we pass address of a pointer to receive object table

                   allocated by the runtime */

                mira_GetObjDataInt(pmr,i,&pObjData);

                /* pObjData allows us to access object details */

                printf("\n obj%d : %d,d ",

                       pObjData[MIRA_OBJECT_ID],

                       pObjData[MIRA_OBJECT_FRAME],   /* along the belt */

                       pObjData[MIRA_OBJECT_POS] );   /* across the belt */

                if( varCount>0 && mira_GetObjDataRegOutput(pmr,i,&pRegData)

==MIRA_OK ) {

                       printf("\t reg:");

                       for(int v=0;v<varCount;v++) {

                           printf(" %3.3f ",pRegData[v]);

                       }

                }

   } /* end of for loop */

         } /* end of if objects */

    } /* end of frame acquisiion */

mira_GetFrameRegOutputVar

Returns a pointer to pixel decisions on the last processed line

const float *mira_GetFrameRegOutputVar(mrkernel* pmr, int varInd, int

maskBackground, float maskVal);

Input: 
· Runtime environment pointer
· regression variable index
· flag specifying if background should be masked
· masking value put on background pixels (if maskBackground==1)

Output: Pointer to per-pixel floating point regression value for the frame

Description:
mira_GetFrameRegOutputVar returns pointer to floating point regression values at the last processed



perClass Mira 5.0 Documentation

207 / 211

line. The pointer can be dereferenced for each pixel of the processed line (from 0 to InputDataWidth-1
inclusive). The output is provided for a regression variable defined by the index given in the second
parameter). The third parameter specifies if background pixels should be masked (mackBackground==1)
or not (maskBackground==0). If masking is requested, the last paramer specifies floating point value
copied into all background pixels. The masking procedure simplifies post-processing of the per-pixel
regression output.
 

mira_GetDecName

Returns decision (class) name given decision index

const char* mira_GetDecName(mrkernel* pmr,int decInd);

Input: 
· Runtime environment pointer
· Decision index (0 to number of decisions - 1)

Output: String name of a class (decision)

Description:
mira_GetDecName returns the name for a specific decision index.

Example:
    printf("classifier decisions:\n");

    const int decCount=mira_GetDecCount(pmr);

    for(int i=0;i<decCount;i++) {

        printf("%d : %s\n",i,mira_GetDecName(pmr,i));

    }

Output:
classifier decisions:

0 : background

1 : product

2 : foreign object

mira_GetDecColor

Returns R,G,B color of a given decision

const char* mira_GetDecColor(mrkernel* pmr,int decInd,unsigned char*

R,unsigned char* G,unsigned char* B);

Input: 
· Runtime environment pointer
· Decision index (0 to number of decisions - 1)
· pointer to red, green and blue color

Output: String name of a class (decision)

Description:
mira_GetDecColor returns R,G, and B colors for a given decision

mira_GetObjCount

Returns the number of objects found after processing a frame

int mira_GetObjCount(mrkernel* pmr);

Input: 
· Runtime environment pointer



perClass Mira 5.0 Documentation

208 / 211

Output: Number of objects found after processing a given frame

Description:
mira_GetObjCount returns the number of objects found after processing a given frame. If non-zero, the
object information can be read using mira_GetObjData* funcitons, see this example.
Note, that the object-specific information is replaced after next frame processing.

mira_GetObjDataInt

Read information on segmented out objects

int mira_GetObjDataInt(mrkernel* pmr, int entryInd, int** ppObjData);

Input: 
· Runtime environment pointer
· entryID - zero-based index of an object
· ppObjData - pointer to a pointer to a table with object information

Output: Result (MIRA_OK or error)

Description:
mira_GetObjDataInt returns details on a specific object found. The first parameter is a zero-based
object index (0..number of objects found -1). The second parameter represents an object table. The
example below illustrates that we declare a pointer to int called pObjData and initialize its value to NULL. In
an acquisition loop, after processing a frame, if an object is found, we call mira_GetObjDataInt in a for
loop extracting object information. Note, that we pass address of the pObjData to the
mira_GetObjDataInt.

The object table:
MIRA_OBJECT_ID        0   Unique object identifier
MIRA_OBJECT_FRAME     1  Frame index for the object centroid
MIRA_OBJECT_POS       2  Position of the object centroid across the belt
MIRA_OBJECT_MINFRAME  3  Bounding box coordinates:
MIRA_OBJECT_MAXFRAME  4

MIRA_OBJECT_MINCOL    5

MIRA_OBJECT_MAXCOL    6

MIRA_OBJECT_SIZE      7  Object size in pixels
MIRA_OBJECT_CLASS     8  Object class index

Example:

    int objCount=0;

    int* pObjData=NULL; /* pointer to object table data */

    while( frameInd<frameCount ) {

        mira_ProcessFrame(pmr,pFrame);

        objCount=mira_GetObjCount(pmr);

        if( objCount>0 ) {

            for(int i=0;i<objCount;i++) {

                /* we pass address of a pointer to receive object table

                   allocated by the runtime */

                mira_GetObjDataInt(pmr,i,&pObjData);

                /* pObjData allows us to access object details */

                printf("\n obj%d : %d,d ",

                       pObjData[MIRA_OBJECT_ID],

                       pObjData[MIRA_OBJECT_FRAME],   /* along the belt */



perClass Mira 5.0 Documentation

209 / 211

                       pObjData[MIRA_OBJECT_POS] );   /* across the belt */

   } /* end of for loop */

         } /* end of if objects */

    } /* end of frame acquisiion */

mira_GetObjDataClassSize

For complex object segmentation, returns number of class pixels wihtin the obejct

int mira_GetObjDataClassSize(mrkernel* pmr, int entryInd, int classInd);

Input: 
· Runtime environment pointer
· entryInd - Object index (zero-based)
· classInd - Class index (zero-based)

Output: Number of pixels of specific class within specific object or error

Description:
mira_GetObjDataClassSize returns the number of pixels of specific class within an object. This
function is applicable when object segmentation mask is defined as "all foregound" i.e. when complex
objects are segmented.

mira_GetObjDataClassFrac

For complex object segmentation, returns the fraction of class pixels wihtin the obejct

float mira_GetObjDataClassFrac(mrkernel* pmr, int entryInd, int classInd)

Input: 
· Runtime environment pointer
· entryInd - Object index (zero-based)
· classInd - Class index (zero-based)

Output: Fraction (0.0 to 1.0) inclusive of pixels of specific class within specific object or error code

Description:
mira_GetObjDataClassFrac returns the fraction of specific class within an object. This function is
applicable when object segmentation mask is defined as "all foregound" i.e. when complex objects are
segmented.
If error occurs the negative error code value is returned.

mira_SaveImage

Save internal segmentation buffer as PNG image

int mira_SaveImage(mrkernel* pmr,const char* filename)

Input: 
· Runtime environment pointer
· Filename

Output: Result (MIRA_OK or error)

Description:
mira_SaveImage saves internal segmentation buffer into a PNG file. It is intended as a quick
visualization of what the classifier can "see" in a deployed system.



perClass Mira 5.0 Documentation

210 / 211

Segmented objects are highligted by white crosses.

Example:
    MIRA_CHECK( mira_StopAcquisition(pmr) );

    printf("\n %s",mira_GetErrorMsg(pmr));

    /* We can save the content of the internal buffer. */

    mira_SaveImage(pmr,"out.png");

    mira_Release(pmr);

Output: Content of out.png file

mira_Release

Release runtime internal session and clean resources.

void mira_Release(mrkernel* pmr)

Input: 
· Runtime environment pointer

Output: None

Description:
mira_Release ends the session and releases all memory allocated by the runtime.

Troubleshooting
If you experience unexpected behaviour or crashes, please contact support@perclass.com

Please provide:
· Detail on your license (dongle number or activation key)

o Dongle: 
§ USB dongle is enabled using license file stored in C:

\Users\USERNAME\AppData\Roaming\perClassBV directory. The license file filename



perClass Mira 5.0 Documentation

211 / 211

contains dongle number Dxxxx
o Activation key:

§ Activation key is listed in the mira.ini file in C:
\Users\USERNAME\AppData\Roaming\perClassBV

· Specific version of perClass Mira you're using
o Please make sure you're running the latest available version of the software
o You can check availability of software updates using Help / Check for updates command

· Description of behaviour leading to a crash. This helps us to repeat and fix the problem.
· If the behaviour leading to an issue cannot be repeated, please enable logging, use the software until

the crash occurs and send us the mira.log file to support@perclass.com

How to enable logging

Logging stores information on software internal process in a mira.log text file. This may help us to
understand and fix issues.

In order to enable logging:
· Close any running instance of perClass Mira
· Open mira.ini file located in C:\Users\USERNAME\AppData\Roaming\perClassBV
· Enable logging by settig 

logMessagesToFile=true
· Start a new perClass Mira instance. The Output window will list in yellow, that logging is enabled

The log is stored in mira.log file in the same directory as above.

TIP: You may quickly open the license directory by Help / Open license directory command. However,
please note that when any instance of perClass Mira closes, it saves its settings back to the mira.ini file
overwriting its content. Therefore, you may loose settings edited externally. That is why we advice to close
all instances before editing the file.

TIP: Disable logging when not needed. Keeping it enabled will incurr a performance penalty


	Introduction
	Getting started
	perClass product structure
	Installation and license activation
	Activation

	Build classifier on existing scans
	Creating a project
	Adding images
	Spectral cube visualization
	Training a clasifier
	Switching between labels and decisions
	Improving the classifier
	Improving the labeling
	Adding new classes

	Where to go next?

	Acquire data and interpret
	Creating a project for acquisition
	Connecting to the stage
	Connecting to the camera
	Recording references
	Defining a scan area
	Recording a scan
	Building a classifier and applying to live data


	User guide
	New project
	Objects
	Object segmentation
	Object separation
	Object classification

	Regions
	Region annotation

	Confusion matrix
	Test set confusion matrix
	Current image confusion matrix
	Optimizing classifier performance
	Cost sensitive optimization
	Performance contraints


	Object confusion matrix
	Detailed information on object matching
	Copying confusion matrix

	Visualization (spectral indices)
	Adjusting spectral features
	Scaling spectral features
	Applying feature extraction to foreground
	Colormaps

	Feature extraction (exporting)
	Extracting multiple features
	Extracting from region grid
	Defining region extraction template
	Exporting into XML

	Regression
	Step 1: Pixel classification
	Step 2: Object segmentation
	Step 3: Object annotation
	Step 4: Regression modeling
	Step 5: Defining test data set
	Step 6: Improving regression model
	Regression plot
	Performance statistics
	Outlier plot
	Error plot
	Regression using subset of bands
	Regressor and classifier band subsets

	Preprocessing

	Additional regression tools
	Model search versus retraining
	Applying to new images
	Pixel visualization of regression output


	Spectral plot
	Class-specific display
	Display range and scaling
	Band selection
	Band subsets used by models

	Frame panel
	Stage panel
	User-defined stage buttons

	Camera
	Camera controls
	Adjusting scan quality
	Optimizing focus
	Auto-exposure
	Square pixels


	Camera modes
	Belt and waterfall mode
	Scan mode
	Stopping acquisition in scan mode


	Scan compression
	Automatically applying compression
	Exporting compressed scans as ENVI

	Recording panel
	Recommended screen setup
	Setting scan name

	Exporting
	Exporting per-image results
	Exporting per-object results
	Exporting visualizations
	Exporting visualizations as float images
	Exporting cubes
	Exporting regions
	Importing regions

	Exporting label images

	Model testing
	Flagging images for testing
	Cross-validation
	Cross-validation over images
	Cross-validation over replicas
	Default action



	Reference
	Release notes
	Integration
	Example of acquisition from Camera API

	Application Server
	Enabling application server
	Communicating with the server
	Command list
	Example communication using Tcl

	perClass Mira Stage
	Assembling instructions
	Disassembling instructions
	Supported cameras

	Supported spectral cameras
	Cubert
	Pleora eBUS
	Headwall
	Headwall MV.X
	Headwall MV.C NIR
	Headwall MV.C VNIR

	Resonon

	perClass Camera API
	miraacq_Init
	miraacq_GetVersion
	miraacq_GetAPIVersion
	miraacq_GetRecorderType
	miraacq_GetErrorCode
	miraacq_GetErrorMsg
	miraacq_ScanDevices
	miraacq_GetDeviceCount
	miraacq_GetDeviceName
	miraacq_OpenDevice
	miraacq_CloseDevice
	miraacq_DeviceIsSnapshot
	miraacq_InitializeAcquisition
	miraacq_GetFrameSize
	miraacq_GetFrameWidth
	miraacq_GetFrameHeight
	miraacq_GetFrameBands
	miraacq_GetFrameDataType
	miraacq_GetFrameDataLayout
	miraacq_CanReturnWavelengths
	miraacq_GetFrameWavelength
	miraacq_SetResamplingWavelengthCount
	miraacq_SetResamplingWavelength
	miraacq_SetResampling
	miraacq_StartAcquisition
	miraacq_GetFrame
	miraacq_StopAcquisition
	miraacq_SetExposure
	miraacq_GetExposure
	miraacq_SetFrameRate
	miraacq_GetFrameRate
	miraacq_Release

	perClass Mira Runtime API
	mira_Init
	Error codes
	mira_GetVersion
	mira_GetErrorCode
	mira_GetErrorMsg
	mira_RefreshDeviceList
	mira_GetDeviceCount
	mira_GetDeviceName
	mira_SetDevice
	mira_LoadModel
	mira_LoadCorrection
	mira_SetMinObjSize
	mira_SetSegmentation
	mira_GetInputWidth
	mira_SetInputWidth
	mira_GetInputHeight
	mira_GetInputBands
	mira_GetInputDataType
	mira_GetInputDataLayout
	mira_GetMaskType
	mira_StartAcquisition
	mira_ProcessFrame
	mira_ProcessCube
	mira_StopAcquisition
	mira_GetFrameDecisions
	mira_GetDecCount
	mira_GetRegVarCount
	mira_GetRegVarName
	mira_GetObjDataRegOutput
	mira_GetFrameRegOutputVar
	mira_GetDecName
	mira_GetDecColor
	mira_GetObjCount
	mira_GetObjDataInt
	mira_GetObjDataClassSize
	mira_GetObjDataClassFrac
	mira_SaveImage
	mira_Release

	Troubleshooting
	How to enable logging



